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The support for audio in existing hypermedia systemsis generally not as comprehensive
asfor text and images, considering audio to be an endpoint medium. Temporal linking has
been considered in the Soundviewer for Microcosm. This linking model is beginning to
become more mainstream through the devel opment of standardsassociated withtheWorld
Wide Web, such as SMIL.

This thesis investigates the application of content based navigation to music. It
considers the viability of using melodic pitch contours as the content representation for
retrieval and navigation. It observes the similarity between content based retrieval and
navigation and focuses on the fast retrieval of music. The technique of using n-grams for
efficient and accurate content based retrieval isexplored. Theclassification of MIDI tracks
into musical roles is used to reduce the amount of data that must be indexed, and so
increase speed and accuracy. The impact of classification is evaluated against a melodic

retrieval engine.

Finally, the system built for retrieval is modified for navigation. A set of tools
which support both temporal and content based navigation is built to provide proof of

concept.
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1 Introduction

1.1 Motivation

A traditional hypermedia system can be thought of as containing a collection of text and
images. From an overview document that outlines the subject matter, a user may follow
linksto alternative, perhaps more detailed, information from the collection. An alternative
to starting from an overview document is to search the collection for suitable initial
material. There is no widely accepted standard that allows audio to be the subject of this

level of user interaction.

In the case of speech radio this might take the form of a user listening to the beginning of
adocumentary, wherethe featuresin the programme arelisted, and on hearing aparticular
topic of interest the user opts to jump immediately to that item; finding an interesting
interview abbreviated, the user optsto listen to the entire interview. A synchronized text
transcript is available which may also contain pre-authored links and, on hearing an
unfamiliar term, the user can ask all availablelinksto be computed dynamically and follow

oneto aglossary.

Music students could use a similar system as a learning tool. Listening to set pieces of
music isoften part of their course work. The music can be distributed over anetwork from
adigital musiclibrary, such asthe VARIATIONS project at IndianaUniversity [Dunn99].
On hearing an unfamiliar concept, the student could find information by following links
that have been previously authored by the music lecturer. This can be very powerful if the
links are based on the content of the music, so that the link is available for every
occurrence of atheme. Retrieval of music using pitch-based queriescould be used to locate

similar music. This could aso be used as a research tool or as an aid to composition; it



allows the composer to ask ‘how have others devel oped this theme'.

Hypermedia systems generally consider audio as an endpoint medium. The hyper-text
markup language (HTML), as used on the World Wide Web, is an example of such a
system. Text and images, through the use of image maps, may link to audio but thereis
currently no reciprocal linking mechanism for audio. It isnot possibleto belistening to a
piece of music and to follow a link from an interesting segment to some related

information.

Temporal linking has been considered in the Soundviewer [Goose95] for Microcosm
[Fountain90]. This linking model is beginning to become more mainstream through the
development of standards associated with the World Wide Web, such as SMIL [SMIL].
Here, links may be created that are based on playback positions within amediadocument.
Literatureregarding linksbased on featuresextracted from audi o documentsisa most non-
existent, with MAVIS [Lewis96a][L ewis96b] being an exception.

Current literature on audio generally consistsof systemswhich classify and catal ogue short
digital audio samples (Foote [Foote97], Wold et al [Wold96]), with the aim of helping
retrieval. Classification and retrieval of music has also been examined (Pikrakis et al
[Pikrakis96], Ghias et al [Ghias95], McNab et al [McNab96]). The only systems that
consider the navigation of audio, and where links may be based on features extracted from
audio, have concentrated on extracting and making use of consequential information that,
while identifying content, does not describe the content. As such, these systems provide

limited support for content based navigation.

1.2 The problem

One can consider retrieval as returning the names of documents which contain the query
content. Navigation can be considered asreturning the names of fileswhich are associated
with to the query content. Both applications can use the same content indexing principles,

but to reference different types of data.

For an interactive system, like Content Based Navigation (CBN), lookup must be fast as
queriesare madein real-time (as opposed to off-line or batch). Waiting morethan acouple

of seconds for the query to complete will be seen by the user as an inconvenience.
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Retrieval may involve large collections of music, perhaps of the order of 100,000 pieces
inthe case of an Internet-based search engine. Navigation islikely to have more moderate

requirements, as only segments of music will be indexed.

Approximate queries must be supported. The quality of the music filesin the system can
not always be guaranteed: they may contain errors or there may be several arrangements
of the same piece. Errorsin tune recall on the behalf of the user (in the case of a user-

entered query) or in the entry of the query must also be accounted for.

Many content representations for music have been considered by researchersin thefield
of content based retrieval. Thisthesis examinesthe effect of using melodic pitch contours
as the content representation. A melodic pitch contour describes a series of relative pitch
transitions. A notein apiece of music iscompared with aprevious note and then classified
in one of three ways: either the pitch went up (U); the pitch went down (D); or itisa
repetition (R). Thus, the piece can be converted into a string with a three-letter al phabet
(U, D, R).

Musical pitch contoursareeasily calculated from pitch information, such asthat contained
in files conforming to the Musical Instrument Digital Interface (MIDI) standard. These
files specify, among other things, when anoteisto start, what pitch and volumeit isto be
played at and when to stop each note. Both pitch contours and MIDI files assume that all
music consists of notes which, while not universally applicable, covers the vast majority
of modern western music. Thisis assumed for the magjority of thisthesis. Techniques that

are suitable for other forms of music are noted where appropriate.

1.3 Contribution

This work shows that melodic pitch contours are sufficiently powerful for retrieval and
navigation of music. A specialised data format is designed and approximate string
matching techniques are employed. Thisformat is shown to be superior to other standard

database formats with respect to the speed of retrieval.

Secondary contours are introduced as a new and complementary representation that does
not requirethe devel opment of additional indexing techniques. They are showntoimprove

matching while adding little overhead to the search process. Using a secondary contour in
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parallel with aprimary oneisshown to be more expressive than using arepresentation that

has five pitch classes.

Standard classification algorithms are applied to classify the role of each track inaMIDI
file. Thisis then used to enhance the music database by only indexing tracks which are

likely to be the subject of aquery. The effectiveness of this approach is evaluated.

The architecture for asystem that demonstrates temporal navigation of temporal mediais
designed and implemented. Thisarchitectureisthen extended to support linksbased onthe
content of music-based media (demonstrated on MIDI files).

1.4 Thesis structure

Thisthesis presents techniqueswhich enable the use of multimedia, specifically audio and
music, as the basis of a document. A review of the related work is given in Chapter 2,
followed in Chapter 3 by an explanation of the author’ swork on content based retrieval of
music. Classification of musicisconsideredin Chapter 4, along with the effect of applying
it to acontent based system. The application of pitch contoursto content based navigation
is covered in Chapter 5. Finally, Chapter 6 presents the conclusions and possible future

work.



2 Related work

This chapter discusses research relating to the topic of this thesis. It starts with an
explanation of the term ‘navigation’ and what it means to navigate audio. Music
representations are then considered before examining content based retrieval and
navigation. A discussion of open hypermediaand other issuesrelating to audio concludes

this chapter.

2.1 Navigation

Anyone who has used the World Wide Web isfamiliar with navigating around a body of
documents. Links are created either between or within documents by embedding
information at relevant points in the source document, indicating material related to that
point. The Hyper Text Mark-up Language (HTML) [HTMLA4] on the world wide web is
the, now classic, example of this model. An information space is navigated by activating

alink in a document, which then takes the user to the related document.

This approach to organising an information space was first proposed by Vanevar Bush in
1945 asaway of managing information overload [Bush45]. The concept wasfirst applied
to computer documents over 30 yearslater in Ted Nelson’ s Xanadu which considered the
links between documents to be of upmost importance [Nelson81]. This too was not a

working system but simply a mock-up of what it could look like.

The navigation systems described here differ in where the link information is stored. One
approach is to embed the links in the source document, as is traditionally the case with
HTML, although XML ischanging thisthrough XLINK and XHTML. The other approach
isto keep the links separate from the documents.
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Inall cases, the concept of alink isthe same although different terminology is often used.
A link contains at least one source endpoint and at least one destination endpoint. An
endpoint specifiesalocation in adocument, or perhapsawhole document. Inthisway, two
endpoints are associated with each other so that, via an appropriate user interface, the
source endpoint may be clicked on and the destination endpoint displayed'. Some systems
support linkswith attributes, which allowsfor more powerful interaction with adocument,

but the concept of associating two or more entities is common to all.

There are acouple of problemswith the use of embedded links. Thefirst being that, while
it is possible to link to any media, the source document is usually text (although image
maps are quite common). It iscurrently not possibleto be listening to a piece of audio and
link to a web document that is related to the clip currently being played. This issue is
gradually being addressed through standards associated with the web, such as the
Synchronised Multimedia Integration Language (SMIL) [SMIL] and associated editors
[Bulterman98].

The second problem is that al instances of conceptual links must be manually
implemented. For example, if one wished to link every occurrence of the phrase
“University of Southampton” to the home page of the University, links must be created for
each occurrence of the phrase. If thelocation of the University page changes, all instances
of the links must be found and modified.

Searching can be considered as another mode of navigation. The user finds a phrase of
interest and searches a body of documents for other occurrences of that phrase. This can
work well in the absence of other linking mechanisms, asit is reasonable to assume that
documents containing similar phrases may concern related subject matter. The technique
was used several timesto locate some of the information contained in this chapter. These
links are said to be generated automatically, as they do not require human interaction to
author them. This approach is not fool proof as a search for the phrase “ baby kangaroos’

will, alongwith relevant documents, find documentsthat contain the phrase* thisdocument

!1t should be noted that thisisjust one method of interacting with alink, but it isthe most
commonly used and is the model employed by the World Wide Web. In HTML, the source
endpoint isimplied by the location of the link in the document. Also, only one endpoint may be
specified (i.e. it only supports binary links).



is not about baby kangaroos”.

The process of searching usually uses an index of the documents that is periodically
generated. This speeds up the process and can be used to centralise resource, asisthe case
with Internet search engines. The ‘search as navigation’ paradigm can be refined, so that
the document index is not generated automatically and, rather than identifying documents
that contain aphrase, returnsalist of documentsthat are related to that phrase. Thismodel
of hypermediaisreferred to as Open Hypermedia and is discussed in Section 2.10.

2.2 Navigation of audio

The ability to link to specified parts of audio files, and to link out from audio files (for
example to the current location in a text transcript of a speech), is not very common but
nonetheless desirable, as the scenarios given in the introduction show. The simplest form

of thisistemporal navigation.

In temporal navigation, links are based on the start time and length forming a selectionin
a temporal media document, such as audio or video. These links are usually stored
separately from the media as not all media formats support additional embedded
information. Upon finding an interesting segment in the media, asindicated by the user,
a simple database query is performed to identify any links appropriate to the timing
information of that media segment.

The Microcosm Soundviewer was an audio tool which supported hypermedia links into
and out of stored audio via this mechanism [Goose95]. Using the Microcosm open
hypermedia system [ Davis92][Fountain90], links could be authored based on the position
of aselection in adocument. All the links from a particular audio document were found
before playing began. These linkswere displayed as coloured ribbonsin an areaabovethe
mediatime line, see Figure 2.1. These ribbons identified the times over which alink was
active. The Soundviewer al so had an option where alink could be automatically activated
upon the link becoming relevant. The two-dimensional display of the links takes up
valuable space on the screen, and can easily become cumbersome where a document has
many links. It has the advantage of making the concept of temporal hypermedia easy to
understand.
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Figure 2.1 - The Microcosm Soundviewer

An audio only environment was developed by Sawhney and Murphy, called Espace 2
[Sawhney96]. It was a prototype system for navigating hyper-linked audio documents.
Continuous audio streams were used to represent the availability of links to other
documents. The example content used recordings of conversations and discussions. It is
likely that the links were time based, due to the concentration of the project on the user

interface rather than content extraction.

Buchanan and Zellweger examined ways of specifying temporal behaviour in hypermedia
documents [Buchanan92]. The Firefly document system provided support for
synchronisation of media clips in a presentation similar to that provided by SMIL (see
below), i.e. alowing clipsto occur in sequence or in parallel. Again, links between clips
were time based, although the exact timing was only resolved when the document was
displayed, as opposed to being an authoring process. Authors needed only to specify event

relationships (events could occur either in sequence or in parallel).

Using only timing information for linking works well with any temporal media, such as
video, as the content is not considered. However, it suffers from one of the problems of
embedded links: each link must be manually authored and maintained. To overcomethis,

links need to be based on the content of a selection in the document.

For links based on content, the source endpoint is specified by some example content,

instead of aposition in afile. Resolving alink requires the content of the source selection
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to be extracted and compared with the source endpointsin alink database to find relevant
links. This is the intended use of the Open Hypermedia model, as discussed in Section
2.10.

2.3 The Synchronised Multimedia Integration Language

The Synchronised Multimedia Integration Language (SMIL, pronounced ‘smil€e’) is an
XML -based initiative that aimsto provide web-based interactive multimedia applications
[SMIL]. The display is split into regions through the use of alayout specification that is
given in the head of a SMIL document. Multimedia files or streams can be assigned to
these layout elements. The flow and synchronisation of the presentation is controlled by
specifying which elements must be displayed in parallel and which must be displayed in

series.

Version 1.0 of the SMIL standard specifies two methods of embedding uni-directional
links within a presentation. Thefirst isthe“a’ element which isintended to be the same
asthe“a’ element in HTML documents. It allowsalink to be formed from awhole media
object. Itisnot possibleto describe alink that is active for aspecific sub-part of the media
object. The “anchor” element addresses this shortcoming by providing support for image

maps and the temporal equivalent.

Multiple anchors can be associated with each media object. Each will specify some
location within that object. Thiswill be coordinates for images, begin and end times for
audio and may be both for video. When used as the source of alink, the anchor element

will contain a destination Universal Resource Indicator (URI).

The destination of links uses the Universal Resource Locator (URL) format that wasfirst
usedinHTML and hasnow itself becomeastandard. Compl ete documentsor presentations
may be referenced in the usual manner. Parts of documents or presentations may be
addressed through the use of id attributesand the“#’ connector. Each mediaobject, anchor
and “a’ element of a SMIL presentation may be given an id, e.g. id = “conclusion”.
Individual elements can be addressed by appending a“#’ followed by an id to the URL,

e.g. http://www.w3c.org/Presentati on#conclusion.

These elements and attributesallow SMIL to be used to specify one-to-one links that must
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be embedded in the source document. Any element, or part thereof, that isthe destination
of alink must be given an identifier. While this is the most comprehensive mainstream
support for linking audio currently available, it does have some drawbacks. Perhaps the
biggest isthat it isimpossible for an author to foresee all the parts of a presentation that
may bethe destination of alink and so giveit anidentifier. Thisisan especially important
point when the person wishing to link to the presentation can not directly modify thefile.
The use of embedded links in SMIL results in the same drawbacks as that shared by
HTML.

Support for SMIL isgrowing, with the availability of both editors and playersincreasing.
Theofficial web sitefor SMIL listseight players(eg: RealMedia sReal Player G2) and ten
authoring tools (including GRINS [Bulterman98]) that support SMIL in some capacity.
Thebiggest indication that SMIL may receive wide acceptanceistheintroduction of basic
support for the standard in the latest version (v5.5) of Microsoft’s Internet Explorer. A
product with a large market share is generally required before people will see any
advantage in using anew standard. Thereisusually little sense devel oping a presentation

that can only be viewed by a handful of people.

The latest working draft of the standard, codenamed SMIL Boston [SMIL20], has taken
the same constructs but modified the XML tag namesto be more parser friendly. Thereis
an XML parser for nearly all programming languages and platforms, but these are not all
of ahigh standard. The most noticeable change to the SMIL specification is the removal
of hyphens from attribute names. Mixed case tag names have been used instead, so *clip-
begin’ becomes ' clipBegin’. The move to incorporate more of the XML related standards
has resulted in the adoption of XPointer as a way of specifying an element that is the

destination of alink without requiring the subject element to have an identifier.

A new synchronisation type has been introduced which is similar to the parallel mode but
only allows one element to be active at any given time. This is intended to cater for
scenarios such as adding audio descriptionsto a video stream to help the visual impaired.

The video stream would pause while the description is playing and then resume.



11

2.4 HyTime

The Hypermedia/ Time-based Structured Language (HyTime [HyTime]), can be thought
of as the precursor to SMIL in some respects. HyTime extends the SGML standard to
define ways of representing the information elements required by a hypermedia systems.
It wasthefirst international standard to consider the representation of hypermedia objects

(as opposed to hypertext objects).

A HyTimedocument consistsof ameta-DTD (Document Type Definition) that definesthe
set of rules used by the document object, which is followed by the document objects
themselves. This makes HyTime flexible, as the document format is essentially
‘programmable’, but makes it difficult to use, as any application that supports HyTime
must incorporate afull SGML parser to be able to make sense of the document. This also
makes it difficult to author HyTime documents, as the document rules must be specified
before proceeding with writing the document body. This may be an acceptable cost in a
large hypermedia system where the HyTime document is a large one and so the relative
time taken to define the rulesis negligible. This gives an insight into what was the likely
target application of the HyTime standard, as the storage layer of a large hypermedia
application.

All the above factors make it an unsuitable language for the World Wide Web. According
to Kimber [Kimber96], “for many applications, it will make sense to transform SGML-
and HyTime-based information into some optimized or proprietary form for final
delivery.” He gives an example of a HyTime document being rendered to HTML for use
on the Web.

Itisclear that HyTimeisacomplex standard which, whileflexible and general, suffersfor
this. There are very few applications which implement the standard, although there are
more SGM L -based editors which help an author of a HyTime document. It is also clear
that SMIL iseasier to understand and simpler to write. The ordering of objectsin HyTime
requires defining an axis (in this case ‘time’) before objects, or groups of objects, can be

placed on that axis.

SMIL issimpler than HyTime but is not as flexible or generic. These qualities make it a
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standard that is suitable for the World Wide Web. It standardises a straightforward
approach that can be implemented relatively easily.

2.5 Content representations

Previous sections have discussed several usesof mediacontent inretrieval and navigation.
How this content isrepresented isimportant, asit affectsthe choice of algorithmsthat may
be used for resolving content based links. For example, text is a suitable content
representation for arecorded speech and many text retrieval algorithmsalready exist. Some
appropriaterepresentationsfor music, andtheir suitability for comparing/ matching music,
are discussed here. Most of these can be obtained by performing feature extraction on
another, usually lower level, representation. As such, feature extraction can be thought of
asrepresentation conversion, taking alow level representation and identifying higher level
features.

Wiggins et al [Wiggins93] described a framework for evaluating music representation
systems. They considered arepresentation to be useful for one, or more, of three purposes:
recording, analysis, or composition. They examined the expressive compl eteness (therange
of musical data which may be represented) and the structural generality (the range of
musical structure) of each of the representations. Precise values for completeness on
generality were never assigned for any of the model sthey looked at, preferring to usethese

concepts to order the representations in two-dimensional space.

Therepresentation used for content based retrieval and navigation systems may depend on
where the query comes from. For example, a representation which allows quick, exact,
matching might be used when linking from selectionsin MIDI files, asaprecise query can

be expected.

The range of currently available content representations is diverse. Some represent
essentially the same data, perhapsin aformat suitable for a specific project. As such, an
exhaustive survey covering all representations of music and audio that are relevant to this
thesisisboth impractical and of little use. The following sections give an overview of the
properties of some of the representations used for music in its different forms. from

composition to a physical sound wave.
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It should be noted that some of the representations discussed here (e.g. MIDI) assume that
music consists of melodic note events. As explained in the first chapter, this assumption

must hold true for melodic pitch contours, the subject of thisthesis, to be applicable.

2.5.1 The musical score

Themusical scoreisarepresentation used by acomposer to instruct amusician on how to
perform a particular piece of music. As such it is the definitive document which conveys
all the notational nuanceswhich arelost as soon asthe pieceis performed. It isaso likely
to contain some structural information whichisalso lost in performance, such asrepeating
bars. There are many existing file formats which may be used to store musical scores, such
asthe Standard Music Description Language (SMDL) [SMDL] whichisan SGML-based

format. The expressive completeness and structural generality are high.

2.5.2 Performance data

TheMusical Instrument Digital Interface(MIDI) [MIDI] isastandard which allowsdigital
instrumentsto transmit performance data between each other. This performance data may
be stored in MIDI files (see section 2.13), so recording the musician’s performance. The
MIDI file format is alinear, time stamped, sequence of events (a detailed explanation is
in Section 2.13).

Due to the performance being a musician’s interpretation of a musical score, one could
arguethat moreinformationiscontainedinthe MIDI stream. However, aMIDI stream can
also be derived from the score and, due to the linear nature of the recording, a lot of
structure and markup islost. It is more accurate to say that the MIDI representation may

contain different information to the score.
2.5.2.1 Notational differences

Most performance oriented standards are concerned with exact pitch, rather than symbols
on a stave, being communicated and stored. This resultsin C* and D® being stored as the
same pitch (which they usually are). This difference is not important to the listener but it
IS to musicologists. Although similarity matching of music concentrates on pitch,

comparison of the notation might alow better use of the existing data. This requires an
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algorithm for determining the correct pitch notation. This issue has been investigated by

Blombach [Blombach95], who claims to have devel oped an algorithm that achievesthis.

Hewlett al so explainsthe usefulness of retaining the‘ spelling’ of pitches and notesthat 40
enharmonic spellings are required per octave [Hewlett92]. He developed a base-40
representation which was used as part of acomplex binary format that allowed asmall set
of classical music to be searched on amachine with limited memory. The base-40 formis
the most complete one found for notes and is aimed at people who wish to analyse pieces

of music.

2.5.3 Melodic pitch contours

Music is recognisable irrespective of the key it is played in, a property which shows that
matching on the exact sequence of notesis not desirable. Exact intervals can be used for
matching, identifying the interval (in semitones) between the current note and the last, as
this is independent of key. Dowling suggested that the pitch direction, simply noting
whether the pitch went up, down or wasrepeated, isuseful in somesituations[Dowling78].
Thisrepresentation isreferred to asamelodic pitch contour. Lindsay discussed how pitch
contours are not a new idea, indeed they were used as aform of musical score for chants
[Lindsay94].

A melodic pitch contour describes a series of relative pitch transitions, an abstraction of
a sequence of notes. A note in a piece of music is compared with the previous note and
then classified in one of three ways: either the pitch went up (U); the pitch went down (D);
or it isarepetition (R). Thus, the piece can be converted into a string with athree-letter
alphabet (U, D, R). For example, the introductory theme to Beethoven's 5th Symphony
would be converted into the sequence: - RR D U R R D. Notice that there is one less
symbol than notes as only the transitions between notes are recorded. An example of a

musical score and its associated pitch contour is shown in Figure 2.2.
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Figure 2.2 - A musical score and its melodic pitch contour
for “Happy Birthday”
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Melodic pitch contours discard a lot of information which might otherwise reduce the
search space, such as rhythm information and the size of intervals between notes. This
results in the representation being an under-specification, effectively having a certain
amount of approximate matching built in. If the notesin two pieces of music rise and fall
inthe same order then they are considered as matching, regardl ess of theamount of change

in pitch.

The melodic pitch contour described above is not likely to discriminate enough in some
circumstances (e.g. comparing short clips of highly similar music). The other extremeis
to use the exact size and direction of aninterval between notes. The compromiseisto use
anumber of interval classes, so that the UDR representation is considered to have three
interval classes. The number of classes must be odd if oneisused for repeated noteswhile
the remaining classes are split equally to represent both positive and negative intervals*.
Thisthesisrefersto the three-class representation as being a gross melodic pitch contour,
due to its very general nature. Downie has evaluated the effect that the number of pitch

classes has on recall and precision in his MusiFind system (more below).

2.5.4 Rhythm contours

The rhythm of a piece of music can be generalised in a similar way to musica pitch
contours. The length of a note in a piece of music is compared with the length of the
previous note and then classified in one of three ways: either the note waslonger (L); the
note was shorter (S); or it isthe same length (R). Thus, the piece can be converted into a
string with athree-letter aphabet (L, S, R). When determining the rhythm class of anote,
an alowance must be made for small differencesin the lengths of ‘repeated’ notes. The
obvious example of where thisis needed isfor music that is entered by hand on a piano
keyboard; reproducing notes of exactly the same length is beyond the capabilities of a
person. A common practice is to base the threshold on the length of the previous note. If
the length of the current note is half that of the previous one then class the current length

as shorter. If it is twice that of the previous one then it is classed as longer. Remaining

*Technically, there need only be more than one pitch class if more non-conventional
assignment isused, such as‘up’ and ‘not up’. However, no research has been published which
either suggests, uses or evaluates this approach.
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notes are said to have the same length.

Unlike melodic pitch contours, this representation is not grounded in psychology theory
but isintended to makefinding similar pieceseasier. It should be noted that thereisno way
to keep rest information. It should also be noted that it is common to use the note onset
interval asthelength, i.e. the distance between one note starting and the next note starting.
Thisis often to overcome alimitation of MIDI where a note may sound for awhile after
the ‘note off’ signal is received due to the sustain of the current instrument. The problem
isalso present onareal piano, where the note may still sound even though the key has been
released. One can not be sure what the user has heard as aresult of thisambiguity, so the

start of the next note is used as a concrete event.

Arbee Chen [Chen98a] has examined the use of rhythm as a means of retrieving songs.
This used the note durations as given by amusical score and included a representation of
rests. Analysis showed that five mubols, the symbol for one note, were enough to uniquely

identify one song out of 102 folk songs.

2.5.5 The Fourier transform

The Fourier transform relies on the principle that any waveform can be described as the
sum of component sine waves, each at a particular frequency, amplitude and phase. The
Fast Fourier Transform (FFT) is an efficient algorithm which approximates the Fourier
transform for sampled signals by using a divide and conquer technique. Given a digital
audio file, a table which identifies the amplitude of each component frequency, at any
moment in time, may be calculated. Aninverse of the transform also exists, so that digital

audio may be reconstructed from a frequency spectra.

There is an uncertainty principle that affects the precision of the FFT algorithm. Thereis
atrade off between the accuracy of the timing and the accuracy of thefrequency table. The
signal must be analysed in n-sample sized chunks (called windows). Small windowsallow
the timing to be accurate, but the small number of sampleslimitsthe ability to accurately

identify the frequency. The inverseistrue for large windows.

The FFT is directly related to the digital audio representation, functionally carrying the

same information, so it can be used to express amost anything. However, like digital
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audio, it lacks explicit musical structure.

The Fast Fourier Transform calculates the Discrete Fourier Transform (DFT). Another
commonly used transform is the Discrete Cosine Transform (DCT). It is from the same

family asthe DFT, essentially being a simplified version of the DFT.

2.5.6 Digital audio

Therawest form of representation isobtained by digitising an audio signal. The amplitude
of asignal isconverted, from an analogueformto adigital one, several thousand times per
second. For example, professional audio recordings currently take 48,000 or 96,000
samples per second. The process can be inverted to reproduce a signal very close to the
original. Once in the digital domain, the audio data may be subjected to lossless or lossy

compression.

A common storageformat for digital audio isthewavefile. ThisisaResource Interchange
File Format (RIFF) based format that may contain meta-data along with the digital audio,
although home users tend not to use this feature. It is possible to extend the format to

contain alternative representations discussed above.

A lossy compressed form of audio that is rapidly gaining popularity is the audio layer
(layer 3) of the MPEG-1 specification (see below), commonly referred to as MP3. This
uses psycho-acoustic masking to reduce the amount of information about the signal that
needs to be stored. It was originally developed as part of the audio/video compression
standard used by VideoCDs. It has gained a lot of support due to the high compression
ratio (12:1) that still retains CD quality sound (as perceived by a panel of listeners). The
reason for the recent increase in the use of MP3 files is probably due to the ability to
transmit audio over the Internet in near-CD quality sound, assuming a reasonably high

quality home connection (e.g. a cable modem or ISDN connection).

2.5.7 Meta-data and associated standards

Much of the information which content based systems have to work hard to extract was
probably initially availablewhen the document wasauthored. Having someway of keeping

this information would improve the quality of content based applications. The answer is
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to keep meta-data, that contains descriptions of the content, with the distributed media. Of
course, this can only apply to new media; historical archiveswill still require the content

to be recognised before meta-data can be stored.

Meta-data is most generally described as data about data. What this actually means will
depend on the data type and how it is being used. This may be bibliographic information,
such as the title and year of publication of a song. The term also refers to aternative

representations of the material that may be used for analysis or search.
2.5.7.1 Meta-data in digital audio files

There are several extensionsto the MP3 fileformat that provide varying amounts of meta-
data. The simplest, and most common, isthe ID3v1 tag which may be found at the end of
many MP3 files. It contains basic track information: title; artist; album; year and a
comment. These fields may contain up to 30 characters, the exception being year (four
characters).

The overly specified ID3v2 tag may be found at the beginning of the file and is designed
to beflexible and overcomethelimitations of the original ID3 tag. Thereisno limit on the
size of fieldsand new fields may be added simply. Althoughit allows much wanted fields,
such as remix artist and album artist, and removes the constraining field size limit, it is
unlikely to be widely accepted. Thisis dueto the format being very complex and the tag
being stored at the beginning of the file, making modifications to the tag hard-disk

intensive.

The biggest problem with the first version of the tag was the limited field size. Thereisa
new meta-data format emerging for MP3 which is as simple to manipulate as the ID3v1
tag but allows 256 characters per field. It also includes support for embedding lyricsin the
fileand soisreferred to asthe Lyric3.2 tag. There is astandard method for time stamping
the lyrics which, while designed for karaoke files, provides a rich set of meta-data for
content based retrieval and navigation systems.

2.5.7.2 Associated standards

As part of the International Organisation for Standardisation (ISO), the Moving Pictures
Expert Group (MPEG) has developed a family of multimedia standards. These are:
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® Storage and retrieval (MPEG-1)

® Digital television (MPEG-2)

® Multimedia production, distribution and content access (MPEG-4)
® The multimedia content description interface (MPEG-7)

® The multimedia framework (MPEG-21)

Thefirst of the family, MPEG-1, was designed to allow storage and retrieval of moving
Images and accompanying audio. The aim was to provide a data stream that required a
bandwidth that was no more than the data access rate of a CD-ROM drive contemporary
with the year of publication of the standard. The MPEG-2 standard strives for a higher
resolution, and therefore ahigher bit rate, that iscomparable with that used in digital video
studios. MPEG-2 can be thought of asthe next generation of the M PEG-1 standard. While
thisissomewhat of asimplification, MPEG-2 remai ns backward-compatible with MPEG-
1. Both standards address the coding and transfer of low-level data for the purpose of
storage and playback. As such, they are not directly related to this thesis, other than that
they may be used to encode the temporal media discussed herein.

The MPEG-4 standard moves away from the encoding of the mediato consider the process

of multimedia production. Nack and Lindsay [Nack99] sum up the aims of MPEG-4:

“MPEG-4 aims to provide a set of technologies to satisfy the need of
authors, service providers, and end users, by avoiding the emergence of

amultitude of proprietary, incompatible formats and players.”

The part of the standard that is most interesting in the context of this thesisis the ability
to attach textual meta-datato streams. Unfortunately, theformat of thetextual information

is not defined, which limits the long-term usefulness of this feature.

MPEG-4 also standardises several different tools for decoding both natural and synthetic
sounds. Oneof thesetool sbeing Structured Audiowhichallowsfor audio to berepresented
suchthat it can be synthesised by an MPEG-4 compatible player. Thedatastream describes
ascore and an orchestra. The score identifies the notes to be played, while the orchestra
describes the timbre of each note. Again, thisisagross simplification of the standard but

summarises the points of interest here. For a more detailed discussion of MPEG-4, the
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reader is directed to Scheirer [ Scheirer99].

The issue of describing multimedia material is being addressed by MPEG-7, which is
currently under development. The aim is to make multimedia documents a searchable as
text by fully describing any multimedia content. It hopes to define a framework for
defining structures for meta-data, similar to the way in which the Standard Generalised
Mark-up Language (SGML) can be used to define HTML. In MPEG-7, an attribute of
some media (a single piece of data) is called a descriptor. A set of attributesis called a
description scheme. The standard will detail an XML-based Description Definition
Language (DDL ) which may be used to define adescription scheme. The DDL might also
allow definitions of descriptors, thisiscurrently under discussion. Several descriptorsand
description schemes will be included, something that will be required to ensure some

compatibility between MPEG-7 compliant systems.

Work began in October 1999 to define aframework for multimedia, MPEG-21. According
to the latest working paper, the aim of theinitiativeis:

“To reach a common understanding about a multimedia framework to
support the delivery of electronic content with the purpose of identifying
where new standards falling under the competence of SC29° are

required.”

The goal of MPEG-21 isto define a set of requirements for components of a“ multimedia
delivery service” to interoperate. The first draft will look at the problem from the
perspective of the consumer. One of the twelve key issues that were raised during a

brainstorming session was “ searching, filtering locating, retrieving and storing content”.

2.6 Content based retrieval of digital audio

Content based retrieval is important to content based navigation because the issues of

content representation, and techniquesfor indexing and perf orming approxi mate matching

3SC29 stands for subcommittee 29, which forms part of the Joint 1SO/IEC Technical
Committee on Information Technology. The Moving Picture Coding Experts Group (MPEG) is
officialy working group 11 of SC29.
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on that representation, have to be considered. Indeed, the difference between retrieval and
navigationisquite subtle: itemscontaining the query arelocated in content based retrieval,
while items relating to the query are returned in navigation. As such, before examining
content based navigation, it is useful to investigate content based retrieval systems.
Retrieval hasthe additional use asameansof locating aninitial mediadocument, required

before the document space can be navigated.

2.6.1 Retrieval of digital audio samples

Theterm “digital audio sample” isused hereto refer to short, descriptive, sounds such as
abird chirping, abell ringing or a car starting. Foote [Foote97] and Wold et al [Wold96]
described systems which could retrieve such samples. The general approach was to
calculatethe Fourier transform of asamplethen extract somesalient featuresfromit. These

features could then be approximately matched agai nst adatabase of pre-processed samples.

The Fourier transform works well for this application as the samples are short (making
comprehensive indexing possible) and distinctive. The matches returned are likely to be
very specific, i.e. returning the sound of a specific car (e.g. aFord Escort) starting rather
than the sound of any car starting. Thisis because the frequency spectraresulting from the
transform can be very detailed and precise. Approximate matching can be used to ignore

some differences but will match irrelevant samples if the matching is too approximate.

2.6.2 Retrieval of digital audio media

The distinctive nature of frequency spectra has been used by David Gibson to develop his
‘namethat clip’ software [Gibson99]. It isused to index collections of digital audio, such
as CD-Audio. The Fourier transform of the audio is taken five times a second and added
to adatabase. Given a query, the same frequency analysisis performed and the database
searched for the nearest match. The problem of searching can be considered one of a 160-
dimensional nearest-neighbour search. The current implementation is in Java and is too
slow for interactive use (20 minutes). The accepted limitation of the software is that the
query must be arecording of the original audio. A recording from aradio transmission or
amicrophone near a speaker is acceptable, but a hummed query or a piano rendition will

not suffice.
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2.6.3 Applying image matching techniques to audio

Some conceptsof imagematching have been appliedtoaudio classification/ retrieval. This
is useful for analysing digital input, such as from a CD, as there is currently no general
purpose (and reliable) method of converting multi-timbral, polyphonic, music into a
musical score. This prevents the melodic retrieval techniques discussed in following
sections from being applicable, athough wewould still liketo be able to index and search
the music in a similar manner. Martin [Martin96] details the ongoing research into

polyphonic pitch tracking.

Image recognition allows a user to sketch a picture which is then analysed and compared
with images in a database. The images are indexed by identifying features in them, such
as lines and circles and their relationship with each other. If a picture could be created
which described a piece of music then features of that picture could be extracted and used

to index the music.

Creating an image of sound can be achieved by use of the Fast Fourier Transform. The
frequency vs. amplitude table can be plotted on a two-dimensional graph, time against
frequency, where the amplitude is represented by using a colour scale. An example of the
resulting picture is shown in Figure 2.3. By applying image matching techniques, this
representation can then be used for indexing. Thisisauseful technique asit canindex any
form of digital audio although it tends to be used for classifying music. Pikrakis et al
[Pikrakis96] reported on one such classification project that triesto identify formsof Greek
traditional music. Fushikidaet al [ Fushikida98] used an FFT plotinconjunctionwith video

to improve content based video scene retrieval.

A similar technique has been adopted Attrasoft*, the authors of the shareware program
MidiFinder. The program istrained using one or more MIDI segments for which similar
segments are desired. A directory of MIDI filesis scanned for files containing matching
segments. According to the user guide, the softwareisrelated to the ImageFinder program
that is produced by the same company. MIDI files can be considered to contain several

one-dimensional dataarrays. They are converted to two-dimensional images by using “1

“Attrasoft could be found on the Internet at http:/attrasoft.com at the time of writing
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to 16 pixels per quarter note”. A quarter noteisthe unit of timerepresented inaMIDI file

by acrochet. MidiFinder forms part of the SoundFinder family of products.
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Figure 2.3 - The output from a Fast Fourier Transform plotted on a two-
dimensional graph

2.7 Melodic retrieval systems

Theincrease in interest in the field of music retrieval systemsis reflected by an increase
in the amount of research and software concerning melodic retrieval. Older systems were
designed to be used by musicologists for analysing pieces of work, whilst more recent
work is more user-oriented and has acommercial edge. The commercial aspect is evident

with severa systems having World Wide Web interfaces.

Query by humming is possibly the definitive application of content based retrieval of
music. In such a system acoustic input, typically sung or hummed by the user, is
transcribed and songs contai ning theinput areretrieved from acollection of music. Results
are ranked according to how closely the songs match the input. Allowance must be made

for inaccurate singing or errorsin the tune recall of the user.

A number of melodic retrieval systems are discussed here which show some of the
approaches taken by other researchers in the field and the resulting performance (when
given). The systems vary in their goals, so concentrate on different aspects of aretrieva
system. The research relating to the MusiFind system isreferred to in later chapters, asit

has a thorough stetistical analysis of melodic contours.

2.7.1 Catfind

Catfind isan Internet search engine for music, based at the University of Hong Kong and
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written by Yip Chi Lap [Yip99]. Thefirst version could search by gross melodic contour
or asolfadescription (e.g. do-re-me). Contours used the characters‘ /’, - and*\’, so the
Happy Birthday example above would be represented as‘ - /\ /\\-/\/\’. The current
version does not support melodic contour entry but still allowsthisas a search mechanism

(i.e. only pitch direction is taken account of when performing the search).

2.7.2 Echo

Echo isa‘search by humming system that was developed by Tomonari Sonada et al at
Waseda University, Tokyo [Sonoda98]. Pitch tracking is performed by a client program

which submits a query to a server on the Internet to retrieve songs matching the query.

The Echo system uses two techniques to improve the quality of results. The first is to
optimise the boundaries for pitch classes, dynamic thresholds. Sonoda argues that it is
beneficial to haveamoreflexible concept of ‘up’ and‘ down’. Instead of rigidly fixing ‘ up’
to be any pitch that is a semitone or greater than the preceding one, the intervals of the
indexed collection are analysed to determine thresholds that discriminate the most. The

same is done for rhythm contours.

The second method of improving the quality of matchingisto use progressively morepitch
classesuntil few (or just one) filesmatch. Thisisreferred to in the paper as coarse-to-fine
matching. A search isfirst performed with three pitch classes (a gross melodic contour).
If too many files match then asearch with nine pitch classesis performed, and finally with

twenty-seven classes.

Table 1 - The effect of using dynamic thresholds on recall

Threshold Pitch only Rhythm only Both
Static 47.3% 13.4% 90.2%
Dynamic 49.1% 35.1% 97.3%

A user trial was performed with atotal of 112 queries from 12 subjects on a database of
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200 songs. Table 1 showsanincreasein recall when using dynamic thresholdsfor thegross
mel odic contour and rhythm contour (source: Sonoda [ Sonoda98]). The technique hasthe
most impact on rhythm contours. A decreasein accuracy was shown when using coarse-to-
finematching and searching on either pitch or rhythm. Anincrease of |essthan one percent
was shown when matching using both pitch and rhythm. The coarse-to-fine matching
proved beneficial when errors were intentionally introduced into the queries. Increasesin
accuracy were then made apparent, although the overall accuracy wasamost 4% lessthan

with no errors.

Combining the two methods and searching using both pitch and rhythm resulted in 100%

of queries ranking the subject filesin the top three suggestions.

The system was then expanded to contain 10,000 songs and methods of indexing large
musi ¢ databasesinvestigated [ Sonoda2000] . They claim an average executiontimeof 0.78

seconds per query and an accuracy of 92%.

2.7.3 Humdrum

Humdrum is a set of tools used in the research of music, developed by David Huron at
Ohio State University [Huron97]. Thesetool s operate on dataconforming to the Humdrum
Syntax, best described as a generic representation framework. It allows many forms of
audio to be stored so as not to limit the scope of the tools, although the most well-known
format is“**kern”. The kern representation is designed to convey functional information
about a piece of music. It is not intended to describe a score for printing. The syntax also
specifies a number of reference records, which may define bibliographic information

pertaining to a piece.

The system has been used by musicologists to answer awide variety of questions about
music. Two of the examplesgivenintheuser guideare: “In Urdu folk songs, how common
isthe so-called "melodic arch” —where phrasestend to ascend and then descend in pitch?”’
and “What are the most common fret-board patternsin guitar riffsby Jimi Hendrix?’. The
tool of interest to thisthesisis ‘patt’” which will “locate and output user-defined patterns

in a Humdrum input”.
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2.7.4 Lemstrom and Laine

Lemstréom and Laine ignored the pitch tracking to focus on the retrieval process
[Lemstrom98]. They presented a representation for musical data which they called the
inner representation. A two-dimensional relative code, derived from the inner
representation, was used for the matching as it was independent of the original key. An

efficient indexing structure, the suffix-trie, was used in the matching phase.

Themusicisindexed using relative pitch changes and duration between the starts of notes
(the inter-onset interval). The inner representation (IRP) file has some similar properties
to MIDI, having tracks and events. It consists of 17 tracks, the first containing the lyrics
while the rest contain instrumental events. Each event is a 12-tuple, giving information
such as: the start time and duration of the note, pitch, symbolic representation, interval

from the previous note and chord information.

The decision to define the number of tracksin the IRP file to be exactly 17 was due to a
confusion between tracks and channels in MIDI, which has 16 channels. A channel isa
very different concept to a track; the MIDI file format is explained in more detail in
Section 2.13. Storing both the exact pitches of the notes as well as the pitch intervals
should not be required as this information can easily be derived at run time with little
performance degradation (probably no more than reading the 12-tupleitself). It is stored
to simplify any programs using the representation as the intervals to not need to be
recalculated. The IRP was not referred to again in the rest of the paper, preferring instead

to use the two-dimensional relative encoding.

Two-dimensiona relative encoding is a representation which consists of a pair of
components, relative pitch and duration, for each note. The method for matching the
melody was dependent on where the query came from. Melodic pitch contours were only
used when large errors were expected in the intervals. When a more reliable query was
given, quantized partially overlapping intervals (QPI) were used. QPI builds on the idea
of defining pitch directions as being small, medium and large. The category overlaps are
an attempt to maketheretrieval processmoretolerant of errorsbut appearsto result ssimply

in an eleven-character alphabet.
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The indexing structure used was a suffix-trie, a structure developed for string pattern
matching. This is atree like structure which stores each suffix of a word, e.g. “Hello”
would be stored as “Hello”, “ello”, “llo”, “l0” and “0”. It is very fast for exact matching
(O(m) where misthe length of the query) but the space requirement is not good; it grows
quadratically with the size of the database. To reduce the space requirement, only the top
part of thetree, up to acertain depth, was stored - effectively using n-grams. Lemstréom and

Laine did not specify the depth used.

Approximate matching was limited to errors in relative pitch, something which is not an
issuewith gross mel odic pitch contours. However, it ispossibleto implement animproved
matching algorithm which would allow for insertion and deletion of symbols. No timing
information was given, so it isdifficult to determine the suitability of thisapproach for an
interactive system. However, due to the comprehensive indexing, one would imagineit to
be superior to the systems developed by Ghias et al and McNab et al.

Therequirementsfor thelengthsof the query keysfor each representation were considered
using adatabase of 154 pieces of music that were “ automatic compositionsof Pauli Laine,
folk-songs, etc.” They showed that the QPI representation returns optimal results, where
optimal istheresponse given by exact intervals, with shorter keysthan gross pitch contours
(7 charactersinstead of 10 characters).

2.7.5 Meldex

Rodger McNab et al developed a system which searched a database of folk songs from a
sung query [McNab96]. Transcription was performed by a system called MT (Melody
Transcription), which accounted for the user’s gradually changing tuning in an adaptive
mode [McNab95]. Searches were carried out using a choice of: an exact match of pitch;
pitch and rhythm; pitch contour or contour and rhythm. Approximate matches were
possible for pitch and rhythm or contour and rhythm.

A large database of 9,600 folk tunes was used to test the system and, using exact matching
of rhythm and pitch, identified tuneswith very few mismatches. However, the system only
matched the beginning of tunes. The task of searching was further ssimplified due to the

folk songs being single track and monophonic (only one note playing at any given time).
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A complex system for transcribing acoustic input was employed. This results in an
unnecessary processing overhead when not matching using exact pitch intervals, as a
simpler algorithmislikely to track pitch accurately. The exact note sung is not important
when using the contour, yet time was taken processing it. However, no indication of the
speed of the system was given. They noted that a major issue would be the development
of approximate string matching algorithms which avoid a computational explosion asthe

size of the database increases.

The system was given aweb interface and named Meldex. It formsthe basis of the music
library functionality at the University of Waikato's New Zealand Digital Library. In
addition to the melodic search facility, which operates on the folk music collection, they
employ an Internet spider to locate MIDI files on the Internet and then index any text
contained within thefile. Thisindex can then be used to locate files by use of atext query.
While queriesto the MIDI text search can not contain melodic content, alarger number of

files are indexed than in the folk music collection (over 100,000).

2.7.6 Melodiscov

Melodiscov stands for Melody Discovery and is a melodic search system that takes an
audio query [Rolland98]. It is being developed at LIP6, Paris, asa WYHIWY G system
(What You Hum IsWhat Y ou Get). They claim that the audio query is transcribed with
over 90% accuracy even when singing lyrics: many of the transcription components of
similar work do not support singing of words. The search component uses severa levels
of representation (called descriptions) of the music that are used to describe the properties
that are derived from the raw sequence of notes. There are three levels of description:
individual, local and global. Information at the individual level concerns a single note or
rest (e.g. specifying the duration and pitch). Local descriptions contain information on a
segment, or musical phrase (e.g. that the passage consists of notes that are ascending in
pitch). General information about the entire piece, such asthe key or the average pitch, is
given at the global level.

Each description may be assigned aweight for similarity matching, so that differencesin
important areas of the music effect the matching process more. These weights can be

specified by the user, so alowing different viewpoints on what makes one piece of music
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similar to another.

2.7.7 MusiFind

The MusiFind project used an indexed n-gram database for music retrieval [Downie99].
The use of n-gramsisacommon techniquefor breaking up long sequences with no natural
boundaries into manageable units. These units can then be used in algorithms and data
structures that are traditionally only suitable for dealing with words. A window of n

charactersis slid along the length of a sequence to produce alist of n-grams.

The MusiFind project evaluated the effect of varying the size of the n-gram window (i.e.
thevalue of n) for 3, 4, 5, and 6 characters. The number of pitch classes required was also
investigated. Representationsusing 3, 7, 12, 14 and 23 pitch classeswere considered. Only
asubset of these was actually tried asit was arequirement for the hash tableto fit into the

memory of apersonal computer contemporary at the time (i.e. one megabyte).

Stephen Downie’ swork led on from the Musi Find project [Downie99], also using n-grams
and then performing a full informetric analysis of the representations. He claimed that a
representation with only three pitch classes (i.e. the gross melodic contour) isineffective
for retrieval asthereisnot enough information to differentiate one song from another. This
isprobably true for the values of nthat weretried asthey wererelatively small. Theclaim
implies a requirement that the number of notes given in the query is relatively small,

compared to the length of the piece contained within the database.

Downieconsidersapplying the concept of ‘ stopwords' to musical n-grams. Stopwordsare
used in many text retrieval enginesto remove wordsfrom queries and indexed documents
that have little resolving power (i.e. they are common to most documents). Downie
explainsthat stop words exist in the English language due to the highly skewed frequency
distribution of words. He claimsthat the distribution of n-gramsisrelatively equal and so

stop words should have little, if any, effect. Thisis not proven experimentally.

Theresearch showed that very little accuracy waslost by not verifying that the entire query
is matched in files suggested by an index-only search. The built-in error tolerance of a
representation with fewer interval classes does not result in greatly improved recall or

accuracy. Instead, error toleranceisbetter served by acombination of asmall nand along
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query, where the n-gramming process provides adequate error correction.

2.7.8 MUSIR

In MUSIR, Salosaari and Jarvelin considered aretrieval model for music [Sal osaario8].
MUSIR also used n-grams but with two, three and four units per n-gram. They considered
the use of pitch interval and duration to retrieve themes from one piece of music, afugue
by J.S. Bach containing nine themes. Two queries were used in their experiment, one
consisting of ten notes and the second adding another six to thefirst (i.e. the second query

has sixteen notes).

This is a very small database, perhaps the smallest possible, but does highlight some
interesting issues. They found that, while n-grams of three and four returned fewer
matches, longer n-grams returned fewer relevant themes. This indicates, according to the
paper, that longer n-grams risk not matching relevant documents. Errorsin the query are
accounted for by the n-gramming procedure, asis the case with MusiFind. Salosaari and
Jarvelin note that the choice of n-gram size has an effect on the ability of the system to
account for erroneous queries. A longer n-gram will require longer queries to match
successfully allowing for errors, as the error will be present in more n-grams. Shorter n-
grams will better support notes that are out of sequence, as the order is not noted when

retrieving and short sequences are more likely to be out of order than long ones.

2.7.9 Query by humming

Ghiaset al also utilised gross melodic pitch contours, but with ‘S’ representing repetition
(or Same), for adatabase supporting audio queries[Ghias95]. Thetest database comprised
acollection of al the parts (melody and otherwise) from 183 songs. They noted that 90%
of these songs were retrieved with 10-12 pitch transitions. If the list of results was too
large, the user could perform a new query on arestricted search list consisting of those

songs just retrieved.

While the system allowed searching on any part of a song, and MIDI files are both
polyphonic and multi track, it did have some problems. Like Meldex, the pitch tracking
algorithm (using Matlab) was very complex and was the slowest part of the system.

Searching the database would slow considerably as more songs are added and the sample
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database wastoo small to base any statistical analysison. Therewasalso alot of unwanted
information in the database, as it contained a lot of information unrelated to the melody

(i.e. only drum / rhythm tracks were omitted).

2.7.10 Query by Pitch Dynamics

Query by Pitch Dynamics (QPD) was a system developed by the Link Group at
Carnegie-Mellon University [Beeferman97]. It was part of the by-content music indexing
project which aimed to explore automatic indexing and retrieval of all formats of music.
This included more than just atool to retrieve a MIDI file that contained some musical
query. They also wanted to provide support for identifying songsthat aresimilar to aquery

song and to extend this to automatic clustering of similar songs.

They invented p-structures which collapse amusical score to remove pitches that are not
used. Thisretained asmuch information about the rel ationshi ps of the notesthat ispossible
without storing the relative pitch. Each distinct pitch in a sequence is given a rank,
effectively removing unused pitches from interval measurements. Figure 2.4 shows an
example graphical representation of (@) notes on a stave and (b) the corresponding p-

structure. The example would be written as[2, 3, 1, 2].

(@) (b)
o
3 ®
o o e e ®
o

Figure 2.4 - An example graphical representation of (a)
notes on a stave and (b) the corresponding p-structure

The p-structure is deduced for awindow that is slid across the song and then mapped into
afeaturevector. Standard high-dimensionality storageand retrieval structurescan beused,
R-treesin this case. These can locate nearest neighbours to a query, which allows a very
direct ranking strategy to beused. The expressivenessof p-structuresiscompared with that

of melodic contoursin Section 3.6.2 of thisthesis.

On average, queriestook 2.9 seconds to locate the 10 nearest files in a database of 1022
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MIDI files. Attempts were madeto deduce which track in the file wasthe melody by using
some simple heuristics. Firstly, tracks that use less that five distinct notes were assumed
to be uninteresting, and so not added. Secondly, the track name was searched for theword
“melody” . If atrack contained that name, then the other tracksin thefilewereremoved and

the matching track used in preference.

The web interface aso supported searching by artist or title and by MIDI instrument
content. The last one isinteresting as it alows queries such as “find all songs with more

than 30% of music being on acoustic piano”.

2.7.11 Themefinder

Themefinder is an interface into a collection of over 2000 monophonic classical themes
[Kornstadt98]. It is implemented as a web interface to the Humdrum toolkit described
above. A full complement of meta-datais also used, which includes the composer, genre,
key and meter. The monophonic representations may be searched by using one of several
musi c representations: exact pitch, pitch class, musical interval, semitone interval, scale

degree, gross contour or refined contour.

2.7.12 Tuneserver

Lutz Prechelt and Rainer Typke at the University of Karlsruhe have written a web-based
interface that uses a Java applet to pitch track awhistled query [Prechelt99]. The system
then utilises gross melodic pitch contours to search a database consisting of the pitch
contours given in the book by Denys Parsons [Parsons75]. It contains 10,370 classical
themes and more than 5000 popular music songs written between 1920 and 1975. It also

has alist of national anthems.

The system aso facilitates bypassing the pitch tracking and entering the pitch contour
directly. There are advanced search optionsthat allow alimited amount of filtering based

on the composer and title.

2.7.13 Vega

Vega was a multimedia database system that supports content based retrieval. It was
developed by Liu and Chen and is designed to index both video and music [Liu97],
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although the video indexing functionality is not considered here.

Three featureswere used to index melodic content. These were: melody, asrepresented in
do-re-mi form; rhythm, note durations (given as a number of beats) and chord sequence,
wherethe chord for each bar isnoted. Thesefeatureswere stored in the database as strings.
The database was ultimately queried using their own Media SQL, athough they also

developed a more user-friendly query tool.

Themusic searchinterfacetook several formsof query: MIDI keyboard; entering the notes
on a staff and by tracking the input from a microphone. Pitch tracking could use either a

zero-crossing algorithm or a discrete cosine transform (DCT) based one.

Queriescould allow for transposition errors, drop-out and insertion errorsin both pitch and
rhythm. The paper suggests that the matching process compares each melody with the
query melody, one at a time. The stored melody is converted into a directed graph to
perform the matching. No timinginformationisgiven but onewouldimagineit being quite
slow, given the use of directed graphs, for which comparison algorithms are complex, and

the lack of an indexed |ookup.

2.8 Approximate string matching

The problem of searching adatabase of mel odic pitch contours can be considered asacase
of simple text retrieval [Downie99]. The field of text retrieval, and the more relevant
approximate text retrieval, iswell researched. Thefield is comprehensively explained by
Navarro[Navarro98]; only abrief overview and detail sof information relevant to thiswork

are presented here.

Developments in the area of text retrieval alowing errors were first used in applications
such asbiology and comparing DNA sequences. Researcherswanted to know how similar
two sequences were, and what they had in common. DNA sequences can be represented
asvery long strings consisting of alimited alphabet (i.e. A, C, G, T). Finding occurrences
of a shorter DNA sequence, alowing for some errors, is very similar to the retrieval of

pitch contours.

In approximate string matching, there are two common types of search: searching with k-
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mismatches, where only substitutions in the text are considered, and searching with k-
differences, where insertions and deletions are also catered for. Whatever the type of
search, the scenario will be one of two types and will have alarge effect on choosing an

appropriate search algorithm: the search may be on-line or it may be indexed.

Intheformer case, all documentsin the system are searched sequentially for matches. This
approach isrequired when spaceor time doesnot allow the documentsto be pre-processed.
Agrep is a Unix tool developed by Wu and Manber which supports fast online search
[Wu92].

The second case pre-processes the documents, building an index, to improve subsequent
approximate searches on those documents. A document may be indexed at theword level,
where the exact location of each word is stored in the index, in blocks or as a whole
document. Word-level indices tend to require more space than document-level ones but

usually support more complex queries.

2.8.1 Query expansion

Exact search indices are well-devel oped structuresin computer science. These allow fast
lookup into | arge databases, sometimesin constant time. These data structures can be used
in an approximate matching scenario by emulating errorsin the query, so that exact lookup

may be performed several times to locate inexact search terms.

Thisisonly effective for a small number of errorsin the query and requires areasonable
length query, or else there is a danger of matching the entire database. For example, a
guery of “Hello” and allowing for three errorsrequiresthat only two of the letters need to
match, which is likely to be the case for many entries. In fact, the size of the expanded
query set, for an alphabetic query that is not case sensitive, will be greater than 263 (=
17,576). This example figure is actually for the query of “Hello” where the first two

characters must match.

2.9 Applying standard text retrieval techniques to music

It is common practice for text retrieval systems to make use of a stop list of the most

frequently occurring words in a set of documents. These words areignored by the system
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when both indexing a document and processing queries. This works well for English
language documents as English adheres to Zipf’ slaw which states that the frequency of a
word multiplied by its rank is a constant. This results in some words having a lot less

resolving power than others, as they occur in most documents.

There may be clips of music which are more popular than others. Knowing clipsthat are
the musical equivalents of ‘small’ words in English, such as ‘&, ‘the’ and ‘it’, could be
used to reduce the weight they carry when calculating a score for a match. It might be
worth removing them from the query completely if the clip does not discriminate much.

It should be noted that thisis unlikely to have any grounding in the theory of music.

Chi Lap Yipfoundthat, for certainlengths of n-gram, musical n-gramsbehave statistically
like English words[Yip99]. Downie performed asimilar analysis but came to adifferent
conclusion, finding that therank/probability of interval n-gramsisskewed when compared
with English test. It isworth noting that the sizes of n-grams he considered were smaller
than those used by Yip.

2.10 Open hypermedia

Many approaches to hypermedia have been developed. Some of these, such as the
Amsterdam hypermedia model [Hardman94], specifically consider audio. One which is
relevant to content based navigation, and so considered here, is the open hypermedia
philosophy [Hall94], asused by Microcosm [Davis92] [ Fountain90] and the DLS[Carr95]
[DeRoure96].

2.10.1 Key aspects of the model

There are two key aspectsto the open hypermediamodel. Firstly, information about links
between documents is stored separately from the documents themselves (in contrast to
common practicewithHTML documents). Thisinformationismaintainedinlink databases
(linkbases) and, by selecting different linkbases, the user can obtain different views of the
documents. Accessto linkbases may be abstracted into alink service, which is anetwork

service supporting the resolution of links.

Secondly, complex processing and reasoning about thelinks may be performed by thelink
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service. Taking the generic link, as found in Microcosm, as an example. When the user
requests available links, the linkbases are queried with either the location in the document
or with the content at that location in the document. Thismeansit is possible to link from
anywhere in a document. In this case, the processing involves searching the database of
links for suitable matches based on the content or position of the source anchor. For
example, alink may be authored such that any occurrence of the phrase “University of

Southampton” is associated with the main page on the world wide web for the University.

Using an open hypermedia system, it is possible to author alink from a phrase to another
document in one step. Users of a system may also be authors of links, even if they do not
have access to the documents on which those links are based. Thisis possible because the
links are held separately from the documents. Most existing systems only allow linking
from text documents, very few have support for audio and none allow linking from musical

constructs.

Theapproach supportslink resolutionthat is more complex than matching simple phrases.
The context of the source phrase in the document could be used to deduce the appropriate
definition of bear and only return links relating to grizzly bears if the document is

discussing the animal, as opposed to the verb.

2.10.2 A standard communication language

The Open Hypermedia Systems Working Group (OHSWG) has developed the Open
HypermediaProtocol (OHP) [Davis96]. Thiswasaimed at providing astandard datamodel
and socket protocol for the communication of link information between open hypermedia
systems. The common features of existing open hypermedia systems were identified and
abstracted into a simple protocol. An existing system would need only to writea‘shim’,
asoftwareinterface between OHP messages and the system, to be ableto interoperate with

other hypermedia systems.

The first version of the protocol was presented by Davis et al and was based on the
message format used by the Microcosm system, a list of tag/value pairs. Due to the
considerable time being expended on the development of parsers for this format, the

protocol was modified to become XML compliant. Thiswasto take advantage of thewide
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availability of XML tools and parsers for avariety of different platforms.

The original aim of the protocol was for interoperability between clients and servers. As
the scope was expanded to encompass the research interests of all members of the
OHSWG, it was realised that a single protocol could not be all thingsto all people. Asa
result of this, the standard was split into several domains, representing the different
domainsof hypermedia. The standard was renamed to OHP-Navigational (OHP-Nav) and
reduced in scope.

2.10.3 A common data model

Members of the group who are based in the University of Southampton have moved away
from defining aprotocol for communi cation and towardsdevel oping an abstract datamodel
of hypermedia. Itishoped that, if hypermediasystemsimplement the same datamodel, the
protocol for communicating link information will become a secondary issue. Thisisthe
goal of the Fundamental Open Hypermedia Model (FOHM) [Millard2000].

Formal models were developed of the different domains of hypermedia (navigational,
spatial and taxonomic). The concepts that are fundamental to all models form the basis of
FOHM. While an object in one domain may define more attributes than are common to all

domains, some attributes may be used in a separate domain.

2.11 Content based navigation

The Multimedia Architecture for Video, Image and Sound (MAVI1S) project [Lewis96a]
[Lewis96b] was an open hypermedia system which allows links to be based on content
from pictures, sounds and video clips. Although primarily concerned with image content,
it did support audio as a proof of concept. The features used to represent audio were
frequency spectra (FFT’s). These could be approximately matched with an audio query to
find related files.

The application of FFT’sisof limited use, as matches using low level representations are
more prone to return irrelevant documents. Thisis because low level datais not suitable
for performing high level comparisons. For example, ashort piece of music played ontwo

different instruments, perhaps an oboe and a flute, will have quite different frequency
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spectra yet might be expected to match on the tune being played. A straight match of the
spectra can only match the tune played on the same instrument, as long asit is played in
the same way. The abilities and shortcomings of using this representation for comparing
audio arebest illustrated by David Gibson and his“Name That Clip” software (seeabove).

Fourier transforms are better suited for instances where the timbre, the relationships
between the harmonic frequencies, is important and enough to distinguish between the
different samples. The retrieval of digital audio samples, as discussed above, is a good

example of this.

Navigation is easily confused with retrieval, asillustrated by Hirata et al whose media-
based navigation system (Miyabi) allows usersto use “the same type of mediafor aquery
asthe mediathey want to retrieve” [Hirata93]. Thisisnot navigation but retrieval, asonly
mediasimilar to, or containing, the query may be retrieved. Navigation should also allow

media relating to the query to be found.

2.12 Identifying irrelevant data

The performance of most matching techniques could be improved by discarding content
which is not likely to be the subject of a search; so less material is indexed. It should be
noted that not all of these algorithms will naturally apply to navigation, due to its highly
selective use of anchors. That is, only relevant information is stored in manually generated
linkbases by default. In this situation, these techniques could be used in reverse to ignore

queries referring to content that would not have been indexed.

2.12.1 Melody extraction

The ability to identify the role of each instrumental line in a polyphonic piece of musicis
very useful. Thetypical query on amusic databaseislikely to be the main melody line, so

identifying thisis of particular interest.

Uitdenbogerd and Zobel [Uitdenbogerd98] tried four algorithms for producing a
monophonic melody from a polyphonic MIDI file. The selection of algorithmswas based
on music perception research which suggests that the sequence of notes with the highest

pitch is likely to be perceived as the melody, unless there is a very interesting, i.e. non-
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repetitive, underlying sequence. The four algorithms they tried are given in the Table 2.

Table 2 - Melody extraction methods evaluated by Uitdenbogerd

Name Method

al-mono Combine all the MIDI channels into one
and pick the highest note playing at any
giventime

entropy-channel Use a simple measure to determine how
interesting each channel is and keep the
most interesting one

entropy-part Split the notes into parts, using heuristics,
and pick the most interesting one

top-channel Keep the MIDI channel with the highest
average pitch then take the highest notes,
asin al-mono

A small user trial suggested that the all-mono algorithm performed best, giving acceptable
resultsfor many cases. Naturally, thisapproach will fail when the mel ody isnot the highest
pitch being played.

The problem they havetried to solveisnot strictly the same asthat given asthe motivation
in this section. Rather, given some polyphonic music, they convert it into a monophonic
representation such that it may be successfully indexed and retrieved. This is thought
necessary due to the majority of systems and indexed representations being monophonic.
Kjell Lemstrdm and Jorma Tarhio remove this limitation by modifying an on-line search
algorithmto locate monophonic sequencesin polyphonic music [Lemstrom2000]. That is,

asingle note in aquery will match that same note if it occursin achord.

2.12.2 Classification systems

Standard classification methods are applied in Chapter 4 to determine the melody line. A
number of approachesto classification arereviewed here. At ahighlevel, al classification

algorithms work in asimilar way.
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Classifiers require a set of pre-classified samples by which their performance can be
evaluated, and many require that same data to implement or train the classifier. A set of
features, referred to as a feature vector, is extracted from each sample. The choice of
features used will depend largely on the type of media being classified but might have to

betailored for each classifier.

All learning classifiers must be trained before they can be used. The accuracy can then be
evaluated against the validation set. Itiscommon for the set of samplesused for validation
to be separate from the training set. This prevents classifiers that simply memorise the
training datafrom giving thefal seimpression that they are 100% accurate; instead they are
realistically evaluated.

2.12.2.a Ad-hoc classifiers

Possibly the simplest approach to classification, at |east intermsof concept, isad-hoc. This

directly codes the knowledge of a person familiar with mediainto the classifier.

This can be effective for media types which follow clear and simple rules. Trying to
differentiate between pictures of sea and grass can be simply coded. Differentiating

between pictures of sea and sky islikely to be more difficult.
2.12.2.2 K-nearest neighbour

Onemethod of classificationisto find the pre-classified feature vector which best matches
the one to be classified. The classification of the query vector is assumed to be the same
as that of the nearest match. In a k-nearest neighbour classifier (K-NN), the full
representation of each feature vector in the training set is stored, along with the
classification for each vector. Given avector to classify, the stored vectors are searched to
find the k that are closest. The classification of the closest vector is returned as the
classification of thequery vector. Closenessismeasured asthe Euclidean distance between
thevectors. Thenearest neighbour and k-nearest neighbour algorithmsare both established

techniques for multimediaretrieval [Chen].

This approach has the advantage that more pre-classified samples can be easily added to
the set stored by the classifier. No informationislost, asall the datais kept, which makes
this approach highly effective. This has the consequence of having relatively high space
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requirements and can be slow to classify.
2.12.2.3 Neural networks

Neural networks are normally faster than k-nearest neighbour classifiers, as evaluation
requires only a few operations on relatively small (compared to the training set size)
matrices. One can consider neural networks to be an approximation of the k-nearest

neighbour method. As such, they are not generally as accurate.

Neural networks are designed to model some aspects of the human brain. A network has
anumber of input nodes which are cross-connected to anumber of output nodes, often via
some hidden nodes (see Figure 2.5). These connections are weighted so that some nodes
are‘more connected’ than others. This affectsthe flow of datafrom the input nodesto the
outputs. The network must be trained, to learn appropriate weights, before it can be used.
Thisinvolves presenting a set of inputs while aso giving the desired output for that case.
The internal connections of the network are modified towards matching the example

output, so that it should learn valid outputs for any given input.

Figure 2.5 - A simple neural network with
three input nodes (left), four hidden nodes
(centre) and two output nodes (right)

Themathematical theory and internal workings of neural networks need not be understood

to be able to use them. They can be thought of as a black box, although it isimportant to
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know that there are a number of parameters controlling the configuration and learning
abilities of the network. These must be tuned for optimal performance; there are tools

available to aid this tuning.

2.12.3 Analysing the structure of music

Although amusical performance is linear, there is an underlying structure to the music.
Analysing this structure could help identify key themes in the music, such asthe * hooks
(the easily memorable clips) in popular music or solos in classical music. Once the
structure has been deduced, this could itself be used asaform of linkbase, e.g. navigating

between all hooksin a piece.

Deutsch worked on isolating solo performancesfrom digital audio [ Deutsch98]. Thisused
the principleof psycho-acoustic masking, whichidentifiesand removes soundsthat are not
prominent in asignal. A common application of psycho-acoustic masking isin layer 3 of
the MPEG-1 standard, which uses it to compress audio. The standard compression ratio
(12:1) produces high quality audio, bearing a high resemblance to the original audio.
Deutsch increased thisratio, to start removing sounds that would be noticed (although not
much) by thelistener; thisiscalled overmasking. Theratio wasincreased to the extent that
only the prominent part of the audio signal remained. Hefound that, in the case of classical
music, this was usually the solo part. It is important to realise that this is very genre
specific though, as solosin classical music are usually the loudest in an audio mix. Other

genres, such a pop music, do not usually follow such rules.

Arbee Chen et al has investigated methods for the automatic discovery of repeating
patterns in music. It is accepted in musicology research that musical themes are usually
repeated throughout a piece of music. They developed an algorithm that used acorrelative
matrix to locate musical sequences that were repeated exactly throughout a piece
[Chen98b]. Empirical testswere performed on acollection of classical works. Theaverage
execution time was ten seconds for a piece with 1000 notes. A new data structure, called
an RP-Tree, was devel oped to reduce the execution time to under four secondsfor a piece
with 1000 notes [Chen99]. The improved algorithm also removes trivial repetitionsin an
attempt to find the segments that are most likely to be the theme of the music. Extraction

of repeating sequences has also been examined by Tseng et al in their music retrieval
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system [Tseng99].

The structure of music hasafurther usefor content based navigation. One of the problems
with an interactive paradigm, such as Open Hypermedia, is automatically determining the

size of the selection in the mediawhich is of interest.

An easily digestible exampleis of someone listening to anews broadcast. A suitable user
interface might consist of asingle button on thelistening devicethat the user presseswhen
they wish to find out more about a story. The structure of the broadcast needs to be
determined for effective linking. Where are the boundaries of the current newsitem?Ina
similar way, the structure of music can be used to aid the navigation of the media by

passing the whole of the current musical phrase to the navigation system.

Melucci and Orio segmented musical worksinto melodic surfaces, short musical phrases,
and indexed these phrases [Melucci99]. The segmentation algorithm was based on the
L ocal Boundary Detection Model (LBDM) whichwas proposed by Cambouropoulos. The
model works on the assumption that alistener will perceive achange of phrase when they
hear some changesin therel ationshi psbetween the notes. Thetransition between each note
in a piece of music is assigned a weight; higher weights suggest that a change in the
melodic surface is likely. The weights are then analysed to find the largest values in the
piece, which is where breaks are most likely to be located.

2.13 The MIDI file format

TheMusical Instrument Digital Interface (MIDI) specification wasoriginally designed as
atransfer protocol by which electronic instruments could communicate with each other.
It continuesto be used in thisway but has al so been adapted asafileformat. Asthisthesis
often refersto MIDI files, a detailed description of them, and the MIDI transfer protocol,

IS given here.

The transfer protocol operates on a 31.25 Kbaud seria link. Thelink formsadaisy chain
through all connected equipment, so that only two MIDI ports are required on each
instrument to connect an entire studio. The MIDI protocol is optimised to take up aslittle

space as possible on the link, and so reach the receiving equipment in atimely manner.



44

Asall the instruments in a MIDI-enabled studio may be connected in a chain, MIDI has
the concept of logical channels. There are 16 logical channels which are used to address
individual instruments. For example, the drum machine may be set up to transmit and
receive information on channel 10, while a keyboard may use channel 1. There are
conventions that suggest the purpose for which some channels should be used; one such

convention is called General MIDI.

A MIDI message, called an event, contains commands such as: note off; note on; after
touch (modify the amplitude of a note currently playing); specify a different sound or
system messages (also called real-time messages). Note on events specify both the pitch
and the amplitude of the note to be played. The pitch is given as anumber between 0 and
127, where 0 is defined as CO and 127 as G10.

The MIDI file format uses the same basic principles as the transfer protocol. It is a
Resource Interchange File Format (RIFF) compatiblefile, wherethefileisorganised into
chunks that may be parsed without knowing about MIDI (although very littleis achieved
by such aprocess). Thefirst chunk is aheader which identifies the type of file, thetiming
resolution of the file and how many tracks the file contains. A track can be thought of as
a single recording take, which might be played in parallel with other tracks. The track
concept isuseful for musicians, asit allowspartsto be managed individually. For example,
the piano part may be recorded separately from the bass, and re-recorded if the first take

was not good enough.

Each track is essentially stored as a binary dump of the MIDI events from the transfer
protocol, along with atime stamp for each event. The only exceptionsto thisare somereal -
time (also called system) messages. One in particular is the MIDI reset message, which
directs al receiversin the system to return to their power-on status. Clearly thisis not a
useful event to storein afile and is adapted to identify metainformation. The meta event
isused to name each track, note copyright information and lyrics. It isalso used to modify

the tempo and time signature of thefile.

2.14 Summary

It can be seen that content based navigation of audio has not been the subject of much
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research, with only MAV 1S supplying audio as a proof of concept rather than an aim. The
next most important research is the similarity matching of music used in content based

retrieval, as a CBN system will have to compare content at some point.

Both of the systems devel oped by McNab et al and Ghias et al have characteristicswhich
arenot well suited to theintended application in content based navigation. Theformer only
indexes the first part of each piece, while all alignments need to be identified, and the
scalability of the latter needs to be improved upon to ensure response times which are

within bounds for an interactive content based navigation system.

Ghias et al suggested that three-way discrimination of pitch might be useful for finding
a particular song among a private music collection, but that higher resolutions would
probably be necessary for larger databases. Lemstrom used suffix-tries and effectively
resolvesmusic to 11 pitch classes. Theindexing engine used suffix-trieswhich gave afast

response time but the size of the database would not scale well.

Content based retrieval and navigation have alot in common. Both applicationsexhibit the
same basi ¢ requirements, namely fast approximate matching of some query content against

alarge database of pre-processed content.

Itislikely that the specific requirements may vary for each case. For example, the source
of queriesfor retrieval may come from anumber of different sources with inherent errors
inthe query (the nature of the errors may be dependent on the source). Navigation implies
selection from an existing piece of music, so the query ismorelikely (thaninretrieval) to
be free from error, but the size of the query may well be different from the retrieval case.
The anchorsin amusic linkbase are likely to be smaller than the complete songs used in
retrieval but, assuming more than one link per song, may contain more targets. These

factors could affect the fine tuning of a database for a particular purpose.



3 Retrieval of music

Thesimilarity between content based retrieval and navigation (asexplainedin Section 2.6)
results in the majority of this thesis considering the simpler case of retrieval. The

application of retrieval techniques to navigation is considered in Chapter 5.

This chapter considers the selection of a representation and the design of a database
structure to support the approximate retrieval of music. The different approaches to
implementing the database are eval uated for speed, while the effectiveness of the database
design is measured. It introduces a new pitch representation that helps improve the

accuracy of the database.

3.1 The nature of a query

It isappropriate at this point to make some comments on the assumptions made about the
queries submitted to the system. One of thelikely applicationsfor amusic retrieval system
isfor auser to submit aquery in order to locate a song. The query might be entered by a
music student using a MIDI enabled device or by placing notes on a score in a notation
system. Someone who isnot amusician might sing or hum apiece of melody to the system.
Whichever of these methods is used, one can assume that the query will not consist of the
entire song (or elsethey are unlikely to require aretrieval system) and that the query may
contain errors. The query is also likely to be quite short, perhaps under ten notes from a
layman user. For exampl e, the opening themeto Beethoven’ sfifth symphony isrecognised

by many people from only eight notes.

Taking a segment of a song not authored by the user as the query, e.g. aMIDI file or a
score from amusic archive, has another set of properties. In this case, the query isnot as

likely to contain errors, or at least not the sametypes of errors. Thisisdueto the query not

46
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being dependent on human recall and because different methods of conversion from the
physical to the digital domain are likely to be employed (e.g. Optical Music Recognition
(OMR) for printed scores). Thelength of aquery islikely to belonger thaninthefirst case,
due to not having to rely on how much the of the song the user can recall. The reasonsfor
using an existing work as the query are also likely to be different from the ‘query by
humming’ scenario. Instead of determining the name of the song that the user is singing,

guestions such as “where is this theme also used” are to be expected.

Theretrieval of music asconsidered in thischapter hastwo purposes. Both of the scenarios
are relevant. As previously discussed, retrieval can be used to locate the first documents
inabrowsing session. Retrieval can also be an aid when creating linksfor navigation. The
second scenario is also of great interest, as it most closely matches the specifications of

queriesin a system used for navigation.

3.2 Compiling the music collection

Before considering the development of a system for retrieving music, it isagood ideato
first obtain somemusic. Themusicwill berequiredfor bothinvestigating requirementsand
for testing theresulting retrieval system. Only MIDI filesare considered, aslarge numbers
of these exist and they avoid the pitch tracking problems associated with other formats,
such asMP3files. Thisalso clarifiesthe subject of any later evaluation, i.e. evaluating the
ability of asystemtoretrievedigital audiofileswould betesting the pitch tracking function

aswell asthe retrieval process under test.

The requirements for MIDI filesin the collection were that they should be representative
of thoselikely tobeindexed by a‘real’ retrieval database. This should ensurethat they will
also represent realistic source material for a content based navigation system. Thismeans
multi-track, polyphonic music. Multiple arrangements of the same songs are allowed, as
they can be used to test the generality of the search procedure. Exact duplicates should be

removed.

The test music collection was obtained from an FTP site on the Internet®. At the time the

® Trantor FTP site: ftp://cam031313.student.utwente.nl/pub/midi [10 February 1999]
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fileswere copied, the site contained over ten thousand files. Filenameswhich only differed
in capitalisation were not downloaded. The checksum of each file was compared and exact
duplicatesremoved, although thisdid not remove multiple versionsof asong. Thisfurther
reduced the number of files by 500. Removing files which the database system could not
use, either becausethey weresingletrack MIDI filesor becausethey were corrupt, left just

over 7500 files for the experiments.

The collection contained over 30 million notes, averaging 120 notes per minute of each
MIDI track and eight tracks per file. The averagelength of a piece of musicinthe database
wasthreeand ahalf minutes. Thisisconsiderably different to thefolk music database used
by both McNab et al and Downie, where the melodies were an average of 56.8 notes
[McNab2000].

3.3 Choosing a representation

Therepresentation chosen for thiswork wasthe grossmel odic pitch contour, asit hassome
interesting propertiesand poses someintriguing questions. Itislikely to beforgiving when
used with human queries, as people are unlikely to recall melodies with 100% accuracy.
Pitch contours are relatively vague; does this result in too many false matches? Or,
conversely, doesthisbuilt-in “fuzziness’ result in alowing astraightforward exact match
algorithm to have some limited approximate matching behaviour? An added advantage, at
least for future work, is that the difficult problem of pitch tracking might be simplified if
only up, down and repeat need to be transcribed.

3.4 Database types

It is obvious that fast retrieval will require more than a collection of text files and a
standard linear text search utility such asthe grep utility, especially asmorefilesare added
to the database. |'s a specialised database required for optimum performance, or are there
viable/ suitablealternatives? Three possible databasetypesare considered here. They were
chosen as being representative of the selection that a software engineer islikely to choose
between. Oneis specialised to the problem, another isastandard rel ational database while
thelast isatext indexing engine - given the previous observations that regard the process

of matching pitch contours as being a case of text retrieval.
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The pitch contour for atrack islong, an average of 310 pitch directions per minute in the
test material. To allow an efficient database |ookup technique to be employed, each track
Is stored as a set of overlapping sub-contours; sub-contours are the atomic units of the
database structure. The length of a sub-contour is referred to as the atomic length, L. To
giveanideaof atypical value, L =12 for the databaseinitially used to test the system. This
isanimportant constant in the database structure asit definesthe number of distinct atomic
unitsthat may be held in the database (which isreferred to asthe atomic resolution in this

thesis).
atomic resolution=3*

This principle is applied regardless of the actual database implementation. It isawidely
used technique; the sub-contours are often referred to as n-grams in related literature.
Lemstrom notes that the ideal implementation would store all possible post-fixes of
contour but that this results in huge storage requirements. It is also unlikely that user
queries would take advantage of such rich indexing. That is, user queries are unlikely to

be of an entire song, or alarge majority of it.

To add a contour to an n-gram database, it must be split into sub-contours by dliding a

window of L characters along its length. An example is shown below where L = 12.

The contour; DURDRUURDRUDUR

Becomes: DURDRUURDRUD
URDRUURDRUDU
RDRUURDRUDUR

3.4.1 Custom database

The aim of the custom database design was to facilitate the fast lookup of a node when a
contour n-gram is the key. Using a perfect hashing function, i.e. one that maps different
keys to different addresses, to index into a lookup table allows just this. As the hashing
function is perfect, thereisno need to compare the nodesfound at that index, in fact, there
is no need to store the key at all. The use of perfect hashing results in a larger space
requirement but, with availability of cheap, high capacity, storage devicesincreasing, the
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speed benefit was considered to out-weigh this drawback.

The custom database is best described by explaining its operation. Occurrences of a sub-
contour in the custom database are located by converting the query contour into a base 3
number (where U=0, D=1 and R=2). Thisgivestherelevant index in alookup table stored
at the beginning of the database file. Each element of the table points to byte locations
further in thefile, identifying the start of the linked list of matches (see Figure 3.1). If the

element contains the value zero then there were no matches for that sub-contour.

Each node in the linked list contains: the byte offset in the file to the next node; the id of
thefilethe node relatesto; and the number of timesthis contour occursinthefile. Thefile
id is a unigue number for which the corresponding file name can be found by using an
associated name database. There is only one node stored per sub-contour per MIDI file
which often produces a compression effect as thisusually refersto more than one *hit’. It
should be noted that the sub-contour is not actually stored in the database, but rather
implied by the position of the related datain the lookup table at the start of thefile.

Lookup table (3" entries) Linked lists containing contour matches

- Y-l A .
& - -~

HEH L

E‘E 1 MATCH MATCH

E 1

i ® o

\ 4
FIRST MATCH NEXT MATCH

Entry for the query contour

Figure 3.1 - A diagram showing the operation of the database

This database structure makesit possibleto determineif there are any matchesfor agiven
query in constant time. Each subsequent access retrieves one match. However, thisis a
lookup technique and only works with exact matches. The lookup table can be considered
as ahash table which uses an optimum hash function. This function maps each distinct, L
length, pitch contour to auniquelocation inthelookup table. Thisallowsfor constant time
lookup, as one disk access ensures relevant data is located, but has the disadvantage of
limiting the number of distinct contours indexed. How limiting depends on the particular

architecture used. On an Intel Pentium |11 system, thisis a practical maximum of 16.

The limit is due to the amount of space required by the lookup table. For example, afile

pointer is 32 bitswide on the devel opment system, which allowsfilesup to 4 Gbyteinsize.
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This means that each lookup table entry requires four bytes of disk space. So an atomic
length of 3would giveatotal of 27 distinct contours, that is 108 bytesfor thelookup table.
Thetable reduces the amount of addressabl e space |eft for the actual node entries (4 Gbyte
less 108 bytes). This effect is not noticeable for small values of L but quickly becomesan
issue as the index table grows exponentially with increasing atomic lengths. Figure 3.2
shows the maximum number of nodesthat may be stored in a4 gigabytefile - when anode
occupies 12 bytes. It can be seen that the size of the lookup table has a negligible impact
on therest of the database where L <= 15. Over 1.44 gigabytes of disk space are required
for the table where L = 18, which is the theoretical maximum for 32-bit file pointers.
Figure 3.2 showsthismore clearly, whereit is shown that thereis not enough spacefor the

lookup table when L = 19 (the maximum number of nodes is negative).
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Figure 3.2 - A graph showing the effect of atomic length
on the maximum number of nodes that may be stored in a
database file

K eeping thelookup table as a separate file would not overcomethisrestriction entirely, as
there would still be an upper limit of 18 pitch directions, although over 100 million
additional nodes could be stored. Another disadvantage of using one-to-one hash tablesis
that space is quickly wasted when a higher value of L is used. Thisis due to the uneven
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distribution of pitch contour n-gramsin music, So some may not occur at all inacollection.

3.4.2 General purpose database

A standard (table based) database is used as the back end. The native support for Paradox
tables in the Borland Database Engine was the particular one used, although most
databases should produce similar results (e.g. Microsoft Access). The method of indexing
used by a particular database will be implementation dependent. It islikely to use afast,
general purpose, index. Hash tables using hash functions which do not map distinct
indexed keys to unique values is one such structure. This approach has the advantage of
allowing greater length n-grams to be used as a direct result of this generality. The
indexing algorithm might be tuned for natural language text, where more than three
characters of the alphabet are used. Thismay |ead to a decrease in performance when used

to index pitch contours.

3.4.3 Exact text retrieval engine

Asthiswork represents pitch contoursassimple ASCI | text, an off-the-shelf text indexing
database was used for comparison purposes. This was the Onix library® from Lextek
International. Thedownside of using thisparticul ar library wasthat theindex must be built
inone passfor it to work efficiently. Thereisalimit on the number of updates possible to
theindex, before having to start again, of 256. Thisisnot likely to be the case with all text
indexing and retrieval libraries. Onthe positive side, theatomic lengthisnot limited to 18,
like the custom file format is, and it claims to be able to retrieve from the index with a

single disk access (on average).

Textretrieval engineshavesimilar propertiesto table based databases. They areeffectively
hard-wired tablesthat model therelationship (word — locations). This specialisation may
result in aslight speed increase over standard database systems.

®Onix is available from Lextek International, see http://www.lextek.com for more
information. It wasgenerously donated by Art Pollard, theauthor of Onix, for these experiments.
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3.5 Query expansion

The design of anear instantaneous system which needs only to locate content that exactly
matchesthequery isrelatively straightforward. All of thedatabase systemsconsidered here
are designed for exact matching. Whilst relational database systems may provide limited
approximate matching through the SQL ‘' LIKE’ command, thisisgeared towardswildcard

matching and not for k-mismatches.

Performing an approximate match using the database structure alone would require the
entire database to be searched. Obviously thisdoesnot scaleto large databases. The notion
of approximate queries, as opposed to approximate matches, isused to solvethis. Possible
errorsinthequery are emulated, the database searched for theresultant list of near matches

and the results collated.

This technique is related to the process of query expansion as is commonly used in
database systemsto improverecall. In this case, it is common to add termsto the original
guery with a view to locating related documents. A thesaurus may be used to add the
search term ‘audio’ to a query containing the term ‘sound’. Documents found to contain
these additional terms will not usually have the same weighting as those containing the

original terms.

To match a query, the set of contours that are within a user-defined distance, d, of the
query is produced. The distance between two contours is given by a string metric that
quantifies the minimum cost of transforming one contour into another. Cost weights may
be assigned to the individual editing operations involved in such transformations, namely

symbol substitution, insertion, and deletion.

The metric used may depend on the source of the query, which could be extracted from a
MIDI fileor fromadigital audio filewith monophonic or polyphonic content. It may come
from original source material or viathe tunerecall skillsof the user. This system employs
theLevenshtein distance[L evenshtein65], where each transformati on hasacost weighting
of 1, but in each case certain types of error may be more common so this weighting may
not be the most appropriate. For a query by humming system, more research into tune
recall is needed to identify suitable weights. It may be possible to establish appropriate
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weights automatically for the metric by learning from areference set of data[Ristad69].

Two methods of query expansion are considered here. Thefirst, described inthefollowing
section, isan algorithmfor achieving the query expansion asexplained above. The second,
givenin Section 3.5.4.2, uses an aternative approach to cater for possible errorsin along
guery. Choosing the most suitable expansion method requires calculating the number of

additional search terms that are introduced.

3.5.1 Tree fuzzy query expansion

A bruteforce approachto collating the expanded query set istoiterate sequentially through
all possible contours of length L. The Levenshtein distance between the query and each
possible contour is evaluated. Contours that are found to be within the distance limit are
added to the expanded query set. Additional and missing pitch directions are catered for
by the string distance metric which considers these errors to have aweight of one. In this

way, adistance limit of one will allow pitch direction to be inserted, omitted or replaced.

It is possible to implement a‘brute force’ algorithm which uses atree structure to ‘visit’
each contour. Consider atertiary treewhich hasadepth equal to theatomiclength, L. Each
node contains a contour. The contour at the root node is empty. The tree branches three
ways at each node, appending a pitch direction to the contour at each level. The set of |eaf

nodes is the set of al possible contours (see Figure 3.3).

(] Root
v -
U] D] [R Tree

Nodes
A\ A\ ;/l\« Leaf
[UU] [UD] [UR] [DU] [DD] [DR] [RU] [RD] [RR] Nodes

Figure 3.3 - The complete query expansion tree, whereL = 2

A simpletreesearchwould traversetheentiretree, comparing the contour at each leaf node
with the query. Thisagorithm can be refined by comparing the contour at each node with
a prefix of the query contour. If the distance limit is exceeded then there is no point in

traversing the rest of that tree, as the error can only increase. This allows large sub-trees



55

to be removed, reducing the number of leaf nodes that need to be compared.

There is a further improvement which can be made. Currently each node contour is
compared. There are two situations where the distance between a node and the query is

irrelevant:

1 If thelength of the contour at atree nodeislessthan the number of errorsallowed,
then it must be within tolerance;

2. If the height of a sub-treeislessthan the remaining number of errorsallowed then
all leaf nodes of the sub-tree will be within tolerance and no node comparisons
need be made.

3.5.1.1 Evaluation of tree fuzzy matching

The speed of the query expansion was evaluated by expanding as many randomly
generated queries as possiblein one hour. The resultsfor an atomic length of 12 are given
in Figure 3.4. This compares favourably with the brute force approach of trying each
possible contour in turn, which took 74 seconds on the same machine. It isinteresting to
note that even when all contours start to match (when d >= 10) the execution timeisfaster

than using brute force, as very little comparison is performed.
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Figure 3.4 - A graph showing the average
execution speed of the tree-based query
expansion, where L = 12
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3.5.1.2 Calculating the size of the expanded query

The number of contours with d-mismatches can not be calculated accurately in advance,
duetoit being highly dependent on the query. A general formulafor the worst case can be
determined.

First consider the case with no errors, i.e. there can only be one contour. The set allowing
for one error contains contours where each pitch direction in the query has been replaced
with the other possible characters (i.e. two, for athree-character alphabet). It also contains

the exactly matching contour, son =1 + 2L (when L isalso the size of the query).

The case for d = 3 can be considered an extension of d = 2. Each emulated error in the
previously mentioned contours will in turn will be fixed while an additional error is
applied. Thisleaves one less position to try (L-1), so theresult of d = 2 ismultiplied by 2
for (L-1).

Thisleadstothegenera form: n= 1+ ((2L)(2(L - D)(2(L - 2))...(2(L - (d - D))) ,where

d < L. This can be better expressed as the following equation.

g L!
n=1+2 {—(L—d—l)!}

To check the validity of this model, the number of distinct n-grams in the expanded sets
was noted at the same time as testing the execution speed of the tree-fuzzy expansion. The
actual minimum, maximum and average set sizes were plotted, along with the estimate
given by the first equation (Figure 3.5). This showed the equation to be arelatively poor
model of the actual sets. This is because following the process described above will
duplicate contours during the expansion. A better approach is to use the pick, or

permutations, function which is defined as:

n!

(n-r)!

nPr=
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This has some visible similarities to the original equation. The permutations function can
be used to determine the number of substitutionsthat areintroduced for each increment in
the number of errors emulated. The following model (referred to as equation 2) was
implemented and plotted alongside the original equation (Figure 3.5). This also did not
produce perfect estimatesbut more closely matched the observed sizes. Dueto the complex
interaction of substitutions, insertionsand deletions, it islikely that applying acurvefitting
algorithm to the observed data will be the only way to successfully model the problem.
Equation 2 should be adequate for the purposes of thisthesis, as the intended application
of this metric only requires an approximation (see Section 3.5.4).

n=1+ iZzllz(qPi)

i=d
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~—equation 1 —=-equation 2
Figure 3.5 - A graph showing the relationship between the
calculated expansion set sizes and actual set sizes

3.5.2 Collating the results

Tuneretrieval can be compared with text retrieval; for example, the number of occurrences
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of a contour in a MIDI file is significant. However, it is perhaps more unusual in text
retrieval system for the query to be so proneto error; as noted above, contour matching is
sometimes more akin to spell-checking; a more intelligent form of query expansion, e.g.
returning the ten most likely pitch contours, could be considered a spelling checker for
contours. This means that the policy for ranking results must be different, giving priority

to alarge number of hits with one error over a single precise hit.

A score is calculated for each file by summing the number of times a contour in the
expanded query set occurs in the file. Each hit is inversely weighted by the distance
between the original query and the contour matched. The inverse weighting ensures that
less importance is given to contours matched which are increasingly different to the

original query. The search results are then sorted in order of their score, highest first.

The system favours matching on large MIDI files, as they contain more contours, so the
scores are higher. To overcome this, the contour count could be normalised upon adding
afileto the database. All counts would be expressed as a value indicating the percentage
of thefilethat each sub-contour represented. For example, asub-contour which occurs 100
timesinafilecontaining 1000 (indistinct) sub-contoursintotal would haveacontour count

indicating the fact that it represents 10% of that file. Thisis atopic for future work.

3.5.3 Handling short queries

Tree-fuzzy query expansion isfine for queries of the same length as the atomic length of
the database. Queries less than the atomic length are easily catered for by trying al
possible endings for all of the expanded smaller query. If the query is much smaller than
the atomic length then this approach can incur a considerable overhead, as the expanded
set can become quite large. The database should be rebuilt with asmaller atomic length if
queries are consistently too small. Alternatively, multiple databases could be built if the
lengths of queries are inconsistent, querying the database whose atomic length is closest

to the query length.

An obscure side-effect of diding awindow along the length of a contour to add it to the
database is that the last L - 1 characters can not easily be located in the database. For

example, take a contour of 13 pitch directions (a) and let L = 12. The two sub-contours
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resulting from sliding the window will be (b) and (c).

@ UDRUDRUDRUDRUDRU
(b) UDRUDRUDRUDRUDR

() DRUDRUDRUDRUDRU

Performing a search for the last 12 pitch directions of (a) will match (c). Searching for a
shorter version of (c) is currently handled by padding the query with all endings possible

to make the query L pitch directions long.

Thetechnique of padding the query will fail if the query is, for example, thelast five pitch
directions of (a): RUDRU, whichisreferred to here as (d). Thisis because there are no n-
grams which start with (d), the window was only slid up to the end of the contour when
added. To be sure of locating (d), one must pad both the beginning and the end of the
query. That is, first with no padding at the beginning, then with one pitch direction of
padding and six at the end, and so on. Thisresultsin alot of padding, about (3" 9)( L - q)

extra pitch contours, where q is the length of the query.

Thissituation only arises when trying locate a contour within the last n-gram of a contour
track. Given the small number of track endings in a database, compared with the amount
of remaining n-grams, it does not make sense to pad short queriesin thisway. Doing this

would reduce the overall accuracy of the database for aminimal increase in recall.

An aternative solution to the problem isto continue sliding the window past the end of the
contour being added, padding to length L before adding. This process is considered de
rigeur in many similar systems but they do not have the requirement that al contoursin
the database must be L pitch directions long, so they have no need of padding. If this
alternative solutionistakentoofar, i.e. adding to thelast pitch direction, 1/3 of al possible
pitch contourswill be associated with each track. This clearly rendersthe database next to

useless.

Choosing an atomic length that is similar to the common query size is the best way of
dealing with thisissue. In some cases, the self-similarity of some contours may help. For
example, thelast six pitch directions of (a) will match (b) when padded in the normal way.
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There is aso a high chance that the contour sequence is repeated elsewhere in the target
contour track. Given the small number of queriesthat are affected by this problem, neither

of the above solutions has been pursued further.

3.5.4 Handling long queries

Querieslonger than the atomic length are more troublesome than ones which are shorter.
Two approaches are examined here: the first slides a window over the query; the second
uses aprinciplefrom approximate matching algorithms and splitsthe query. Both methods

produce a set of contours that may be used for a subsequent index search.
3.5.4.1 Using a sliding window

The approach first considered wasto use the same sliding window technique as used when
adding contours to the database (see Section 3.4). Each sub-contour is then expanded in
line with the distance limit. The set of expanded sub-queriesis collated into one set. The

lowest distance is used where a sub-contour occurs in more than one set.

Theworst case expansion for each sub-contour is defined above, so the worst case overall
will be dependent on the number of contours, whichisgivenby g- (L - 1), whereqisthe

length of the query. So, n = expansion_per_ngram(q - (L - 1)).
3.5.4.2 Splitting the query

While the dliding window method is suitable for queries which are not much greater than
the atomic length, it iswholly inappropriate for very long queries, such as an entire MIDI
file. A moreintelligent way of splitting the query isto useaprincipleidentified by Wu and
Manber and discussed by Navarro [Navarro98]. The idea is based on the fact that for a
search allowing one error inthe query, the error must be either in thefirst half of the query
or the second. An exact search can be performed for both halves of the query and the
results combined. As at least one half of the query is correct, the search results are
guaranteed to contain a match. Thisis generalised for any given number of errors, d, by
splitting the query into d+1 pieces. This is the second method of query expansion that
allowsfor errorsin the query.

The use of n-grams hasimplicationsfor this method. If the split produces queriesthat are
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smaller than the atomic length then they must be padded out by trying all permutations of
pitch directions that may end each piece. For example, given a query that is 20 pitch
directionslong, and assuming one error, the query will be split into two pieces, each of 10
pitch directions. If the atomic length is 11 then each half becomes three queries, the

original with U, D and R appended (asshownin Figure 3.6) resultingin six queriesintotal.

UDRUDRUDRUDRUUDRUDDR

/ N\

UDRUDRUDRU DRUUDRUDDR
+ pad to atomic length +
UDRUDRUDRUU DRUUDRUDDRU
UDRUDRUDRUD DRUUDRUDDRD
UDRUDRUDRUR DRUUDRUDDRR

Figure 3.6 - Splitting along query in an n-
gram database

Thisexamplestill showsanimprovement on the previous approach, which would produce
ten sub-contours from gliding the window before each sub-contour is expanded to allow
for any errors. Thereisa point beyond which splitting the query will not be cost effective.
If the example above used a query of only 12 pitch directions, there would be two split
gueriesof 6 pitch directions. Completing all possible endingswould result in 486 contours

(3"1-9 padding per part and two parts).

Aswell as not allowing these split queries to be smaller than the atomic length, the use of
n-gramsrequiresthat they must not be larger than the atomic length. Given aquery of 100
pitch directions, and assuming one error, the ideal split would be into two queries which
are both 50 pitch directions long. Unfortunately, this can not then be used to search the
database. The best approximation to the splitting method is to segment the original query
into atomic length sized chunks, ensuring that there are at least d+1 pieces. A simplistic
implementation would move along the query making such chunks and fill in the endings

for any remaining query. Thisisvery expensiveif the remainder is small, leaving alot to
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pad. The number of extra contours produced by padding is 3°, where p is the number of
pitch directions to pad. It is better to take slightly undersized chunks from the query and
fill intheendings. Distributing the padding in thisway resultsin aslittle as 3p being added
to the expanded query. A smaller set is preferred as this more accurately represents the
query, so the search results will also be improved. The time taken to perform the index
lookup will also bereduced, astherearefewer sub-contoursto search for. The pseudo code

for the splitting function is shown in Algorithm 1.

let min ngrams ceiling (query length / atomic_length)
let min pieces distance limit + 1

let num pieces max (min _ngrams, min pieces)

let avg size = query length / num pieces

let remainder = query length mod num pieces

while (query length > 0)
begin
if (remainder > 0)
let piece first (avg size + 1) characters of query

remainder remainder - 1
else

let piece = first avg size pitch directions of query
endif

if (piece is the last piece)

pad the beginning of piece to be atomic length characters
else

pad the end of piece to be atomic length characters
endif

add the padded contours to the expanded set

remove piece from the beginning of query
end

Algorithm 1 - Pseudo code for the query splitting algorithm

Note that the last piece has the beginning padded, as opposed to the end as described
previously. Thisisrequired asaconsequence of theway contoursare added to the database
which meansthat thelast L - 1 pitch directions of acontour can not be located (see Section
3.5.3). Recall that thisisbecause short queriesare padded for all possible endingsand there
is nothing for this padding to match on.

Consider what happenswhen short pieceshavetheir endingspadded and the query consists
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of the end of acontour in the database (or acompl ete contour from the database). If thelast
piece of the split query has fewer than L pitch directions, it is not guaranteed to have
anything to match against. Thisisillustrated in Figure 3.7, which showsaquery of 31 pitch
directions against the last part of a contour in the database, where the atomic length is 14
and one error is alowed in the query. The last piece of the split query (b) is 10 pitch
directions, padding will try and match past the end of (a). The solution proves to be a
simple one, add padding at the beginning of the last part. There must be this special case
handling, always padding in this way will mean that the beginning of contours will no

longer match.

@ 14

P 5 \
11 10 10
I
C1m
I |

Figure 3.7 - A diagramillustrating the effect padding a
split query (b) when searching for the last part of a contour
in the database (a).

There are many scenarios where the queries are not likely to benefit from this alternative
processing. For example, retrieval systems that process user queries are unlikely to have
many instances of people searching for thelast notesof apiece of music. Conversely, there
are scenarioswherethismay be moreimportant. One exampleiswhereacompl ete contour
added to the database is the subject of the search (which is conceivable in the case of

navigation).

One could argue that one sub-contour from along query not being located in theindex is
not likely to be detrimental to the search as awhole. There are cases where the last piece
isasubstantial part of the query, such asthe query shown in Figure 3.7. This amounts to

one third of the query (81 sub-contourswhen it is padded) which might not match against
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the desired contour in the database and could be found in *undesirable’ contours. It isthis
last point, that i nappropriatefilesmight match better purely because of the padding method
used, which means that the padding issue must be addressed. Omitting the last piece from
the search is to be preferred above padding from the end. Perhaps a more persuasive
argument for handling this case is that the processing overhead is minimal and will

improve the quality of the results of a search.
3.5.4.3 Estimating the size of the expanded query set

Splitting aquery isnot as processor intensive asthe tree-fuzzy query expansion. As such,
the need to estimate the size of the expanded query set is reduced. It might well be easier
simply to perform the expansion than to develop an a gorithm to determine the size of the
resulting set. The estimating algorithm (Algorithm 2) duplicates the initialisation of
variables similar to those used in Algorithm 1 but replaces the piece handling with three
simple calculations. The result, n, will be close to the actua number of sub-contours
produced by the splitting algorithm in most cases, but it is still an estimate as it assumes
that all sub-contourswill be unique.

let min_ngrams = celling (query_length / atomic_length)
let min_pieces = distance_limit + 1

let num_pieces = max (min_ngrams, min_pieces)

let avg_size = query_length / num_pieces

let remainder = query_length mod num_pieces

Iet n_per_pa ce \Nlth r= 3 (atomic_length - (avg_size + 1))
let n_per_peice without_r = 3 (@omclength -avg_size)

let n=(remainder * n_per_peice with r) +
( (num_pieces - remainder) * n_per_peice with_r)
. _____________________________________________________________________________________________________________________|
Algorithm 2 - Pseudo code for the estimating the number of sub-contours when
splitting the query
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3.5.4.4 Concepts of error tolerance

The combination of handling of long queries and query expansion resultsin two concepts
of error tolerance. Thefirstisthat introduced by tree-fuzzy query expansion. Thisoperates
on each atomic length window on aquery that is processed by using asliding window. This
can be thought of asalocal error tolerance, or the local distance limit. For example, on a
query of 13 pitch directions, and assuming an atomic length of 12, alocal distance limit

of 1 will allow for 2 errorsin total.

The second concept isthe number of errorsto allow intotal, the global distance limit. The
query splitting algorithm uses this limit for deciding on the minimum number of piecesa

query must be split into.
3.5.4.5 Selecting the best expansion method

For the fastest index search, the number of sub-contoursin the expanded query set should
be kept to a minimum. The most appropriate expansion method can be determined by
calculating the size of the sets each method would produce. I1deally, the cal culationswould
return precisefiguresbut thisisnot crucial. Anecdotal evidence hasindicated that arough
approximation is good enough to select an appropriate method. Anecdotal evidence also
indicated that, while this strategy results in the fastest search, using a sightly larger

expanded query set could help improve the accuracy of the search.

3.5.5 Multistage queries

The use of n-grams hasthe side effect that alonger query, whilst returning amorerelevant
top choice, will usually return more matches no matter how the query is expanded. This
issimilar to the behaviour exhibited by some Internet search engines, suchas“Altavista’.
The more information a search engine is given, the more relevant the top suggestion is
likely to be, although many millions of documents may partially match. Thisisdueto the
fact that no checking is done to ensure that the whole query is actually contained in the
matched files, or indeed that they occur next to each other (that they are temporally
aligned).

It isreasonablefor auser to expect that alonger query would result in fewer matchesbeing
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found. Thisis not the case because, as described above, a larger expanded query set will
find more matchesin the index. The user’ s expectations can be met to alimited extent by
sanity checking the results of the search. Firstly, there will be a minimum number of sub-
contoursin the query that must present in any result for it to have chance of being amatch.
For example, along query of length 31 might be split into three pieces. This means that
each result must indicate that at |east three contours match to be valid. The calculation of
the minimum number of hits is dependent on the method of expansion. If the sliding
window method was employed: min_hits= (query_size- atomic_length) + 1. Splitting the
query require the use of: min_hits = ceiling(query_size / atomic_length). This works,
regardlessof theerror tolerancesused, athoughit not likely tofilter out many resultswhen
higher tolerances are used, asmore sub-contoursare present in the expanded query set and

so the hits per result will be higher.

The second method of sanity checking, which can be used in conjunction with the first,
requires that the index be searched with alocal distance limit of zero. It is based on the
principle that, for an exact match, all sub-contours in the expanded query set must be
present in any valid result. This means performing an AND search for the query set. This
technigue can be enhanced to cater for aglobal error tolerance by ensuring that no more

than global _limit sub-contours are missing from each result.

Anunfortunate side effect of expanding long queriesisthat, whiletheindex can determine
that a file contains at least some of the query, it alone can not confirm a match for the
whole query. There is nothing to guarantee that the parts of the query that matches are
temporally aligned. As such, the use of n-grams requires long queries to be validated, in
theory at least. Downie [Downie99] claims that performing this validation did not

noticeably improve the accuracy of his results.

3.6 Matching using secondary contours

Pitch contours are designed as an abstraction of the exact pitch to allow for errorsin the
input. This is useful for both hummed queries and queries produced by using feature
extraction engines. Aswell as allowing low quality queries to locate music requested by
the user, the pitch contour can also produce a large number of false matches. The pitch

contour for two pieces of music can beidentical, even though they might be very different
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to listen to. The example scorein figure 3.8 showsthis, where the two bars have the same
pitch contour of ‘UDU’.
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Figure 3.8 - Two different bars with the same
primary contour

While pitch errors are likely to accumulate over time with many query sources, e.g.
humming, more information can be deduced from notes which are close together. One
improvement would beto classify intervals out of five possibletypes: up, up alot, repeat,
down and down alot. The classification for up, down and repeat is the same as the one
discussed previously. The distinction between ‘up’ and ‘up a lot’ could depend on a
threshold on interval size, but a more reliable approach isto compare a note with a pitch
previously established inthe contour; e.g. if the current noteisof higher pitch than the note
before the last one, then itisclassified asbeing ‘up alot’. It should be noted that thisonly
adds more information when the pitch direction changes. For example, in a sequence of
ascending notes all but the first pitch direction would be ‘up alot’. The five pitch classes
can be encoded as a single character representation of the direction types: u, U, r,dand D
for up, up alot, repeat, down and down alot respectively. Using this representation, the
first bar of the example (Figure 3.8) would be‘ udU’, while the second bar would be‘ uDu’,

showing that the two bars are indeed different.

Analternative approach has been adopted which hasasimilar effect but retainsthe existing
representation. A secondary contour is created where each symbol represents the
relationship between the current note and the ‘ note beforelast’; e.g. in the example above,
this secondary pitch contour would be *UU’ for thefirst bar and ‘DD’ for the second bar.
This concept of secondary contours could be generalised to n-level contours, where the

pitch of the current note is compared with the nth previous note.

Using the existing representation allows the same database structure to be used. A second

database that contains the secondary contours is stored alongside the primary contour
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database. Thelookup procedureiscarried out for each database and theintersection of both
sets of resultsaretaken, asboth the primary and secondary contours must be present in any
matching file. This noticeably reduces the list of matches while maintaining a quick

response time.

This initial query only identifies files which contain both the primary and secondary
contours. Further improvements are made by checking that the contours are aligned:
ensuring they happen at the same time in the file. This uses the cached contour files that
were created when the MIDI file was added to the database.

3.6.1 Comparison with five pitch classes

To compare the expressiveness of primary/secondary contours with that of asingle five
pitch class representation, alist of all theoretically possible combinations of primary and
secondary contoursfor three consecutive noteswas produced. An examplewasthen found
for each combination, where one existed. Thisisshownin Figure 3.9, whereit can be seen

that only 13 combinations out of the 27 possible are valid.

More importantly, there are only 13 ways of arranging three consecutive notes. This can
be proved by considering the number of positions that are available to each note, with
respect to the previous notes. The product of the number of positions can be taken as the
number of arrangements. Thefirst noteisused asareference, asthereisno previous note,
so can be considered asfixed and only having one position. The second note can be either:
higher than the first, equal to the first or lower than the first. This gives three possible
positions. The third note can be either: higher than both previous notes, equal to the first,
equal to the second, between thefirst and the second or lower than both the previous notes.
This gives five possible positions for the third note. This would suggest that the total
number of arrangementsis 15 (1 x 3 x 5) but thisis not so, as there are two special cases.
If thefirst two notes are the same, then there can be no * between the first and the second”.
There are also duplications when the first two notes are of equal pitch, as “equal to the
first” and “equal to the second” will produce the same arrangement, making one of them

redundant. These two cases reduce the total number of arrangementsto 13.
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Figure 3.9 - All possible primary / secondary contours for three notes, with examples of
each. A dash indicates that no example could be found

The secondary contour is constrained by the primary. For example, for three notes which
increase in pitch, the primary contour is*UU’. If the third note is higher than the second,
and the second higher than the first, the third note must be higher than the first. It can not

belower, or even the same pitch as, thefirst note so the secondary contour canonly be*U’.

It can be seen that the five pitch class representation has no way of denoting a repeating
pattern as shown in the secondary contour, so ‘UD/U’ (primary contour / secondary
contour) and ‘UD/R’ both translateto ‘ud’. It is clear that converting a contour from two
three-class contours into one five-class contour will lose information which can not be
regained. The conclusion must be that using two separate contours is more expressive in
this respect than a single contour with more pitch classes. With two extra representations
for arepeat, the use of a secondary contour gives the equivalent of seven pitch classes,
although having three types of repetition might not be as useful asdividing the pitch scale
into seven segments. It does, however, incorporate an element of temporal information, e.g.

showing that a pitch is repeated every other note.
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Table 3 - The trandation of primary/secondary contour combinations to a
representation with five pitch classes

Primary | Secondary (|5 Class Primary | Secondary (|5 Class
uu U uu DU R du
ub U ud DD D dD
ub D ub DR D dr
ub R ud RU U ru
UR U ur RD D rD
DU U du RR R rr
DU D du

Table 3 also shows that the secondary information is only useful when thereisadirection
change in the primary pitch contour, i.e. “UD’ or ‘DU’, as the secondary contour may be
inferred in all other cases. For example, the primary pitch contour ‘UU’ always has a

secondary pitch contour of ‘U’.

3.6.2 Comparison with p-structures

The Query by Pitch Dynamics [Beeferman97] retrieval system uses p-structures to
maintai n therel ationships between all notesexcept the preciseinterval. For example, it can
directly show that thefirst and last notes are the same (or that they are different). The same
is not true of primary contours, as they only specify the relationship between the current
note and the previous one. There are cases where more information is implied, e.g. the
contour of ‘UU’ implies three distinct notes, but the worst case will not contain any
implicitrelationships(e.g. ‘UD’). A similar argument appliesto secondary contoursasthey

only guarantee to specify the relationship between the current note and the previous two.

From the above, it can be deduced that n-ary contours are as powerful as p-structuresonly
when nisno lessthan the length of the query minusone. Thisisimpractical for queries of
more than a few notes but would be more flexible than p-structures, as the level of

accuracy required of a contour could be defined on a per query basis.
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3.7 Comparison of accuracy

The system of music retrieval that is described in this chapter has a number of variables
that will affect the accuracy of asearch. The most important onesarethe distancelimit, the
atomic length and whether secondary contours are used, or not. There is an additional

implied variable: the number of filesin the database.

This section evaluates the accuracy of the database and answers questions such as. are
secondary contours useful? What happens to performance as errors in the query are
accounted for? What happens to performance as the atomic length is varied? Databases

using atomic lengths of 9, 12, 13 and 14 were compiled for the evaluation.

The quality of matches was evaluated by performing searches for pieces of music which
were known to exist in the database. The rank of the target piece (if found) was noted,
along with the total number of matches found. Database queries were ssmulated by
extracting segments from MIDI files in the indexed collection. The set of queries was
automatically generated and consisted of 500 MIDI files, each being 10 secondslong. The
querieswererequired to beat least 14 pitch directionslong. Thisisareasonablelength for
aquery of that duration, given the earlier observation that the coll ection averagestwo pitch
directionsasecond. Therestrictionis, in part, also related to the fact that the largest atomic
length considered here is 14. Evaluation when allowing for short queries would be
misleading as it becomes difficult to determine if the results of the search are poor due to
the query parameters or the query itself. It should be noted that these randomly generated
queries might not necessarily reflect human generated ones but is the easiest way of

obtaining a statistically significant number of queries by which to evaluate the system.

Three types of measurements were considered for evaluating the quality of the results.
Recall is not discussed here because in all tests it was 100% and so is not a useful
discriminator. Given the knowledge that the target of the query is aways found, where it
appearsin the ranking is a more informative measurement. Also, is 100% recall achieved
by the number of matches being so large that the target islikely to be included by chance,
i.e. isthewhol e database returned each time? The mean rank and mean set sizemetricsare
aimed at measuring this. While the average quality of searchesis obviously animportant

factor, itisnot necessarily agood indicator of the performance asperceived by auser. This
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is because a few extreme values can have a significant influence on the mean value. To
counter this effect, the rank by which the majority of targets are found is recorded. A
majority is considered here to be 85%, or more, of queries. This allows statements of the
form “the majority of queries rank their targets in the top four matches’. In a ranking

system, thisis arguably more relevant than the number of files returned.

The usefulness of secondary contourswas evaluated by considering the effect they had on
adatabase with an atomic length of 12. Figure 3.10 showsthat thereisalinear relationship
between the size of the database and the ranking of targets. In addition to this, it clearly
shows that secondary contours are highly effective in improving the ranking of targets.
Note also the difference between the average performance and that perceived by a user.
Thereisasimilar linear relationship between the size of the database and the number of
matchesreturned. Again, secondary contourssignificantly improvetheresults, halving the
number of matching files found from an average of 396 to just 183 (for a database with
7,600 files). Given the clear advantage that using secondary contours has over not using

them, therest of thischapter only considerstheresultsof tests performed when using them.

0 2000 4000 6000 8000
Number of Files
Figure 3.10 - A graph evaluating the use of
secondary contours. From top to bottom: mean
rank with primary, majority rank with primary,
mean rank using secondary, majority rank
using secondary
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Figure 3.11 shows the effect that allowing for errors in the query has on the ranking of
targets. It gives thisinformation for two databases, one with 100 files and one with 1000
files. Theranking of targetswhen performing an exact search (d = 0) on a100-file database
isgood. Inthiscase, 86% of queries placed thetarget asthe top match and over 91% were
in the top two. The other extreme is the performance on the larger database and allowing
for two errorsin the query. Here, only 50% of querieswill return the appropriate piecein

the top six matches.
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Figure 3.11 - A graph showing the effect of allowing for
errorsin the query

The evaluation proved that the quality of the results can be improved by increasing the
atomic length, L. The average rank of targetsis markedly better when L = 13 compared to
L = 12 (see Figure 3.12). The advantage gained by increasing L from 13 to 14 is not so
great. Smaller atomic lengths become increasingly ineffective. The average ranking of
targetsin adatabase of 7,600 filesthat has an atomic length of 9is313. Thisisequivalent
to approximately 4% of the database, making it ineffective for all but the smallest
collections of files. A similar relationship was observed for the ranking of the majority of
queries (Figure 3.13), although the rel ationship isnot so uniform. Interestingly, thisshows
the ‘majority’ rank to be worse than the average for L = 9, being 445 for the largest
database.
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The number of matches found follows a similar pattern to the other two metrics. Figure
3.14 shows the number of matches found to increase linearly with the number of filesin
the database. The gradient of this relationship islower as the atomic length is increased.
It shows again that an atomic length of 9 istoo small, returning 843 matches (on average)
for the largest database.
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Figure 3.12 - A graph showing the mean rank for the
different atomic lengths and database sizes
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Figure 3.13 - A graph showing the rank of the mgority of
gueries the different atomic lengths and database sizes
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Figure 3.14 - A graph showing the mean number of
matches found for the different atomic lengths and
database sizes
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In addition to the simulation of an operational database, the nature of the custom database,
an inverted index of the entire set of MIDI files, made it possible to determine the

performance for optimal (atomic length) queries directly.

Each possible sub-contour in the database was examined and the number of files which
contained it wasrecorded. Theresult was alist of the number of sub-contours (essentially
atomic length queries) and the number of filesin which they occur. More queriesmatching

in fewer files suggests that there will be fewer false matches.

Theresultsareplottedin Figure 3.15 and Figure 3.16. Thefirst graph showsthat increasing
theatomiclength L doesimprovetheresolution of thedatabase. That is, more sub-contours
are contained in only one file. An efficient database is one whose lookup table does not
have much unused space. To get an idea of how the efficiency of the database is affected,
in Figure 3.16 the sameresults are plotted agai nst the percentage coverage of the database.
This showsthat over 25% of the possible contours with 13 pitch directions match just one
file. Observe that the efficiency is decreased for greater L.

=12
| =13
=14

1 2 3 4 5 6 7 8 9 10
Exact Nurber of Files Metching

Figure 3.15 - The number of contours vs. exact number of
matching files

The average number of files returned for each database is shown in Table 4. The
decreasing average, together with thefirst graph, suggeststhat increasing L doesimprove
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performance, athough efficiency is subsequently decreased.

——L=12
—&—L =13

Percent of Dotabose

—AL=14

Exact Number of Files Matching

Figure 3.16 - Percentage coverage vs. exact number of
matching files.

Table 4 - Average number of files returned for
different atomic lengths

L Aver age

12 16.97
13 9.71
14 5.99

3.8 Comparison of speed

The database of 7,600 fileswasindexed using the custom database structurein about three
and ahalf hours. Files are added to the database at an average rate of 35 per minute, or one
every two seconds. The primary concern isthe speed of lookup as, for most applications,

the index does not need to be modified interactively.

The time taken for an atomic length query was measured by generating random primary
and secondary contours and performing an exact search on those contours. This was
repeated as many times as possible in ten minutes. An average execution time could then
be calculated. Thiswas done for each database type. From Table 5, it can be seen that the
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custom database is the fastest but the text retrieval engine is less than half a millisecond

slower. The standard database is clearly much slower.

Table 5 - The average time taken for an atomic length query

Database type Time per lookup

Custom format 1.75ms
Onix 2.16 ms
Standard database 40.16 ms

The time taken for the accuracy tests to execute was measured for the custom database.
This information was then used to calculate the total time taken for processing a query,
including extracting a pitch contour from the query file. On average, queries of the ten
second clips took 70.8 ms to execute. While observing the progress of the tests, it was
noticed that the majority of queries were executed much more quickly than this, perhaps
three or four times quicker. Thiswas offset by afew searchesthat took several secondsto
complete. A busy link server could take advantage of this behaviour by increasing
throughput by identifying and ignoring queries that are known to be slow. Thiswould be

particularly beneficial during peak usage times.

3.9 A web-based music retrieval system

A Common Gateway Interface (CGI) was developed for theretrieval system. The CGlI is
amethod of dynamically creating web pages. The user cantypeaURL into aweb browser
which executesaprogram or script on theweb server that generatesthe appropriate HTML
document. Arguments to the executed code can be embedded in the URL, such as the
search terms for an Internet search engine. It is common for the user to enter these

argumentsviaaHTML form.

Anindex for small collection of MIDI fileswasinstalled on aweb server. The index can
be searched by primary and secondary pitch contours, entered on the main page (Figure

3.17). From the results page (Figure 3.18), the user can play a matching MIDI file or
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identify where in the song the match, or matches, occur.

Although psychological research has suggested that pitch contours play a strong part in
how melodiesare remembered, or at |east compared, it isnot an easy representation for the
user to create directly. A small number of people were asked to write down the pitch
contour for Happy Birthday (i.e. from memory to paper) and only a few transcribed it
correctly. Thisisdespite the fact that most people hummed the tune correctly. Itisfor this
reason that an alternative interface was sought.

The Java piano applet (Figure 3.19) allows the user to enter a tune using a familiar
interface (even to non-musicians). The pitch contour for the entered tune is generated
automatically oninitiating asearch. In practice, thiscreatesaURL of the sameform asthat

created by the web form and so displays the same results as for the form-based interface.

3 Search By Humming - Microsoft Internet Explorer

| «~

A short description of, and a tutonial on, pitch contours is available, as iz the Lst of files n
the database. For more mformation, and applications of the technology in audio
hypermedia systems, see my homepage at:

You can either enter a pitch contour to search for below or use the rudimentry java
kevboard,

15t Order Contour (required): (e.g TDEUIDDTUTIDEITD)

2nd Crder Contour {optional): (e g EDUEDRUEDTIULD)

[T Distance Limit (0 to 2. default 0
[ | Mear Match Limit: (100 to 20000, default 10000}
[ Max Results: (10 to 150, default 100}

)

Figure 3.17 - The search form of the web-based interface




h By Humming - ki b Internet Explorer

Results of Search

15t order contour: TDETUTDDTUTIDETD
2nd order contour: EDURDEUEDTIUD
7 first order matches.

15 second order matches.

5 files found.

Scare Filename
29 A¥EL-F WID [ 4
8 AEL F NID 4
2 ASELF WID [ 4
1 SURVIVEZMID B 2
1 IONLYWAN MID b =

Search took 0 seconds.

)

Figure 3.18 - Search results as presented by the web-based interface
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You can use the kevboard below to enter your query. It will calculate the melodic contour
automatically for you.

|Enter Jequence |

Figure 3.19 - The Java piano applet

Theweb-based retrieval engineisfunctionally equivalent to aremote lookup service. Any
client program that is connected to the Internet can use the web interface to perform
content based retrieval. Thismodel is similar to the approach taken by agent systems. As
part of the Agent Fest, acombined effort to write agentsfor SOFAR (an agent framework),
a Java-based agent performed melodic pitch contour lookup by using the above
mechanism. Anagent that extracted text containedin MIDI fileswasdeveloped inasimilar

manner, using a CGl / agent combination.

The retrieval software developed for this thesis has been used more directly by Matt
Swoboda. Matt devel oped an application that watches what a musician is playing, using
aMIDI instrument, and identifies what is being played at any given moment. Regarding

the accuracy of search results, he says:

“The system works very well for a user who plays badly and expects to
find their desired result somewherein the rankings but perhaps not at the

top. It performs less well for a perfectly played performance.”
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Thisisto be expected, both due to the searches allowing for one error and because pitch
contours assume that the exact pitch can not be relied upon. He notes that there are some
contours (e.g. al R'sor al U’s) that are reported as matching in many files. He proposes
that this is a shortcoming of pitch contours. This may well be the case for all U’sbut is
unlikely to hold for asequence of repeated notes, no amount of pitch classeswill represent
thisdifferently. Inthiscase, itismorelikely that repeating notes are so common that they
should be removed from the query. A large list of matches is probably less helpful than

returning no matching documents.

3.10 Augmented searches

It may bethe casethat auser knowstheartist or title of apiece of music they are searching
for. Thisinformation could be used to narrow the search if metadata is available, such as
if MIDI files had a standard method for storing metainformation, e.g. title and artist. The
MIDI file format has the provision for naming each track. How thisis used is dependent
on the person sequencing the file but common uses are to label each part (drums, vocals,
lead) or to label each instrument (piano track, violins, brass section) or sometimesto note

the artist and title of the song, along with the name of the person who sequenced thefile.

The fact that there is no convention for storing this information makes it impossible to
extract just thisinformationreliably. Instead, all thetext contained inthefile must be used.
A text retrieval database can then be employed to index the text. It must be noted that not
all files contain the relevant information, so the candidate files presented by a melodic
search should not be culled just because they do not feature in the results of atitle search.
The text search can only reliably be used to increase the matching relevance score of the

files which contain that text.

Thereisaclass of MIDI filein which the lyrics that accompany the music are embedded
aslyric events. Each lyric event has timing information, so that a software karaoke player
can display each lyric at the appropriate time. These lyrics may be extracted and indexed
using the same method as described above, so being used to augment a search. There are
also applications for content based navigation, as the lyrics for a particular segment of

music may be extracted as content to be used to resolve alink.
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The concept of extracting and indexing text contained in MIDI files was tested by
developing a piece of software that did just that. It used the same text indexing library as
given in Section 3.4.3. A collection of 870 karaoke files was added to the database.

A screen shot of the software is shown in Figure 3.20, and the test has shown that the idea
is a sound one. Although no formal testing was carried out, it is possible to make some
commentson the development. Indexingisfast, informally measured at over eight files per
second, and retrieval is even faster. A lot of thiswill be down to the performance of the
text search engine used, which is not the subject of thisthesis and so testing thisformally

was thus deemed out of scope.

K Midi Finder =]

Search | bk anage the datal:uasel About thiz prngraml

Quen: Inever been born | Searchl I

Search results:

American Pie 2 DO McLEAM .mid
American Pie DOM MCLEAN. mid
Bohemian Rhapsody QUEEM. mid
Here | Go Again »wWHITESNAKE mid

Wien tewt
Play
Sequence

Humber of matches: 4

Figure 3.20 - Screen shot of the MIDI text indexing and
retrieval tool
3.11 Conclusions

This chapter has described afast retrieval method which uses contour n-gramsto index a

collection of MIDI files. It allows approximate lookup of the index through the use of
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query expansion. Errors can be simulated in short queries while long queries may be split
to avoid errors. These query management techniques may be used independently of any
particular indexing method. The use of the custom database format has been shown to be

preferable, although the text retrieval engine comes a close second.

The results of the index lookup must undergo several stages of verification before a
concretelist of matches can be presented to the user. In practice, thefinal check against the
sourcefileisnot usually required. The use of anew representation, the secondary contour,

as an additional representation proves to be worthwhile.

Thehandling of long queriesiscurrently optimised for fast index |ookup but thiscan result
in atrade off against the accuracy of an index only lookup and can actually take longer, as

there are more candidate files.

Asthey stand, the techniques presented in this chapter are suitable to form the basis of a
reasonably sized content based navigation system. Over 80% of ten second queries have
been shown to return the target song in the top three from a database of 1000 complete
songs. It is not reasonable to expect similar performance when substituting the song

database with a collection of 1000 hypermedia anchors.

Theretrieval system presented tries to make the best use of the data placed in the index.
Before considering navigation of audio in depth, it isworthwhileinvestigating the quality
of thisdata. There were over 30 million pitch directionsin the primary contour database,
averaging 120 pitch directions per minute of each MIDI track. Given that the number of
songs that have ever been written is orders of magnitude greater than that used to test the
database. It seems obvious that reducing the amount of data being added, while
maintaining recall accuracy, is the best way of ensuring the system will scale and should
improve performance for the same unfiltered database. An approach to this problem is
considered in the next chapter, which uses part classification to filter out irrelevant MIDI

tracks.



4  Enhancing retrieval by classifying musical

parts

Classification can improve content based retrieval systems by decreasing the amount of
noise in the database. Taking retrieval of music as an example, there is little point in
indexing content which isnot going to be the subject of subsequent searches. For example,
removing all but the lead (melody) line should improve the matching ability of aquery by
humming system. Alternatively, a music education application might focus on one part,
such asthe bassline. Content based navigation can also benefit from classification by this

extrainformation by allowing it to be used as another component of the link.

This chapter describes the investigation into the classification of the musical parts. The
effect of applying the technique to a database of music is subsequently evaluated. This

chapter presents an extension of the work reported in [Blackburn2000].

4.1 Introduction

Classification has usesin both temporal and content based navigation, although one could
argue that the temporal case is a form of the latter: content may be extracted from the
source document using the temporal information. The classification could be used as a
parameter to link resolution. Thisenablestemporal linksto be authored on particular parts
of the music, i.e. from 20 seconds to 30 seconds of the bass line. Similarly, content based

navigation would allow an anchor to take the form of ‘lead lines that sound like this'.

The MIDI databases developed by Ghias et al [Ghias95], McNab et al [McNab96] and
Blackburn and De Roure [Blackburn98] make use of the General MIDI (GM) standard,
which defines MIDI channel 10 to be dedicated to drums. Assuming that all MIDI files
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adhere to the standard, which the mgjority do, rhythm tracks can be identified with ahigh
degree of certainty and not added to the database. General MIDI can aso help identify
instruments, which could be relevant in some applications, but of course does not identify

the role that instruments play in the piece.

In some scenarios, such as some implementations of content based navigation, the track
being classified may be taken out of the context of the other tracks. This implies a
requirement that music must be classified without the benefit of comparing the
classification subject with the rest of the piece. Removing this requirement should make
identifying the lead line relatively simple, as severa studies suggest that thisislikely to
be the track with the highest pitch [Uitdenbogerd98]. Common sense would suggest that

the bass line would have alower average pitch than the lead.

4.2 Part types

Four musical part classeswere used which were aimed at how alayperson listener islikely
to identify each part. This approach avoids the use of any genre specific terminology and
so is more generally applicable. The classifications used were: accompaniment; bass,
drums/ rhythm and lead.

The use of aclassification to describe irrelevant parts was considered but it was felt that
it would simply introduce noise into the classifiers, making identification more difficult.
Using a separate confidence measure, allowing a ‘not known' classification, would be
more appropriate, although not all classifiers are capable of providing this. While none of
the implementations in this chapter cal culate such ameasure, none of the algorithms here

preclude adding this functionality.

4.3 Compiling the training set

Classifiersrequire a set of files by which to evaluate their performance. Many require the
same data to implement the classifier. One hundred MIDI files were selected at random
from the test collection of 7500 files, see Section 3.2. These covered avariety of genres.
Certain rules may be assumed if it consisted of a single genre, e.g. popular music. The

variablequality and variety of musical style makes classification that much harder, but the
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result should beamoregenerally applicableclassifier. Thepart classificationfor each track
in each MIDI file was marked up manually. The tracks were then extracted to individual
MIDI files (so there was only one track per MIDI file). This resulted in a total of 535
classified musical parts: 152 accompaniment; 103 bass; 144 drums and 136 lead.

4.4 Musical features

Classification requires the extraction of a set of features, referred to as a feature vector,
from each track. Two feature vectors can be compared by determining the Euclidean
distance between them. The Euclidean distance is found by summing the squares of the
difference between each element in a vector and then taking the square root. Another
function evaluatesthe’ city block’ distance. Thisisalsoreferredto asthe absol ute distance,

asit issimply the sum of the differences.

A variety of features were extracted from each training track. Features were chosen that
could be represented as a single number, with the exception of number 5. Therearealarge
number of featuresthat could have been extracted. A selection of featureswhich the author
thought might be useful inidentifying the part type were used. The selection was based on

informal discussions with colleagues and friends. These were:

The number of notes per second

The number of chords per second

The pitch of notes (lowest, highest and the mean)

The number of pitch classes used (i.e. C, C#, D, E, etc)
Pitch classes used

Pitch class entropy

The length of notes (lowest, highest and mean)

Number of semitones between notes (lowest, highest and mean)

© © N o gk~ wDd P

The polyphony of the track (lowest, highest and mean)

=
o

How repetitive the track is
The number of the MIDI channel used
The instrument patches used most

=
N e

All of these features are normalised to a value between 0 and 1, as this improves the



88

performance of neural networksfor classification. It might also improve the effectiveness

of other classification systems and can make calculation of a probability straightforward.

Repetitiveness is a number based on how many distinct n-grams there are in the primary
pitch contour of the track. This is represented as a percentage of the number of pitch
contours in the track. If there are 20 distinct contours, in a track which has 100 pitch
contoursin total, the repetitiveness value would be 0.8, indicating that 80% repeats. For
thiswork, n = 12 was used. Thisis not a standard measurement of repetitiveness; thereis
no one standard technique available as it relies on the representation used. The use of n-
grams throughout the database made this approach easy to implement and was the

overriding factor in the decision to use it.

4.5 Approaches to classification

Fivemethodsof classification wereconsidered and are described inthissection. They were
chosen to be representative of different approachesto classification. Some techniques are
purely statistical while others attempt to bring to bear some knowledge of the nature of the
content. A learning algorithm is represented in the form of a neural network. A

combination of all these approaches completes the selection.

4.5.1 A simplistic statistical approach

The first approach taken was to average each of the features for all of the tracks of a
common part classification. Theresult wasfour feature vectorswhich describethefeatures
commonto each classtype. A feature vector to be classified iscompared with each of these

class templates. The class of template that matches the closest indicates the part class.

Although not particularly scientific, this technique could be implemented quickly and

provided a benchmark by which to evaluate the more complex approaches.

4.5.2 An ad-hoc classifier

The ad-hoc classifier was based on directly coding the knowledge of a musician. A
discussion was held with an experienced musi c student to determine which of the features

he felt would best help identify part types. The implemented classifier notes the features
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in achannel that make it more or less likely to be aparticular part. A probability can then

be assigned to each part and the most likely chosen.

As previously mentioned, General MIDI (GM) files assign channel 10 to drums. In
addition to this, there are some GM instrument numbers that are usually used for rhythm
channels (i.e. timpani, taiko drum, melodic tom, synth drum, reverse cymbal and wood
block). Tracksthat use channel 10 or an instrument that isusually used for percussion are
assumed to be drum tracks. The probability of other tracks being drumsistaken to be 70%

of the repetitiveness measure.

A track ismore likely to be accompaniment if it only uses notes which are no more than
one octave either side of middle C and islikely to be polyphonic. Bass partstend to usethe
two octaves bel ow theaccompaniment and are quiterepetitive (ameasure greater than 0.6).
Basslinesarevery likely to be monophonic and are heavily penalised if they are not. Lead
parts often use the two octaves above middle C and are also likely to be monophonic. They

are penalised for being repetitive.

4.5.3 K-nearest neighbour

The k-nearest neighbour (K-NN) classification method is, theoretically at least, the most
accurate one considered here. Theentiretraining set of feature vectorsisstored, along with
their part classification. Classifying avector findsthe example vector that best matchesthe

unclassified one and returns the classification of that example.

Due to therelatively small size of the training set (hundreds instead of thousands) it was
feasible to keep the entire set in memory. Searching against the set should result in a
noticeable performance hit (compared to the previous two methods). No improvementsto

performance were considered here as accuracy was the primary concern.

45.4 Neural networks

The K-NN method is accurate but has the potential to be slow. Neural networks can be
thought of as an approximation of k-nearest neighbour. They are usually faster, requiring
only acoupleof matrix operations, and contain moreinformation than thesimple statistical

approach.
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A multilayer perceptron based classifier was trained on 90% of the data and calibrated on
the remaining 10%. Standard neural network evaluation techniques were applied to
determine the best network configuration and learning parameters. This approach was
taken on the advice of an expert in the field.

4.5.5 A hybrid approach

After evaluating the previous methods (see Section 4.6), a hybrid classifier was
investigated. In a hybrid classifier, the results of two or more classifiers are combined to

give amore reliable classification.

Theideal hybrid might be to identify the classifier that is most reliable for each part and
takethat probability. That is, to usethead-hoc classifier for accompani ment and drumsand
the neural network for bass and lead. In theory, this should result in about 80% overall
accuracy. Unfortunately, the outputs of the classifiers are not directly compatible. It may
be that the probabilities of one classifier are all mainly above 50%, while another may
calculatelower values. Inthe context of the other probabilitiesof asingleclassifier, amost

likely classification can be determined. Other, less direct, methods must be employed.

It is aso important to note that the relative values of some classifiers can not be relied
upon. A good example of this is the neural network classifier. It was trained here to
produce one outcome, that the classification with the highest probability isthe correct one.
It was not trained to rank the possible classifications. This means that all but the most
likely part type must be ignored, the absolute values of none of the classifiers are
important. It should be noted that thisis not alimitation of neural networksin general, but

does illustrate the problems associated with handling the probabilities directly.

The first method of integration considered was to weight each of the probabilities
according to how reliable that value is. The probability for each part is determined by
calculating the mean value across all of the classifiers. For example, the‘bass' probability
from the neural network classifier isweighted by 0.8725. The same is done for the other
classifiers and the mean value taken as the likelihood of the track being the bass line. As
it uses the classifier outputs directly, even though they are weighted, it should be

susceptible to the problems outlined above.
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Using avoting arrangement overcomesthe problemsassociated with handling probabilities
directly. Each classifier isgiven onevote asto which part typeit thinksismost likely. This
technigue can be modified so that the more reliable classifiers are given more votes than

lessreliable ones.

4.6 Comparison of accuracy

The manual classification was compared against that given by each classifier (see Table
6). The results were broken down to identify which method performs best for each part
type. The mismatches were also broken down, thistime to show where each method gets
confused - when aclassificationiswrong, what isit mistaken for? Both Euclidean and city

block’ distance metrics were evaluated.

Note that a high accuracy for agiven type can only betaken to show reliable classification
if it is not often falsely assigned. A high false match would indicate behaviour similar to
alwaysassigning atrack as bass, so giving a 100% record for determining bass tracks, but

gives apoor overall performance rating.

The K-NN classifier was given 90% of the training set, so that 10% of the training set
could be used to evaluate its performance, allowing a more direct comparison with the

other methods.

Table 6 - Overall classifier accuracy

Classifier Euclidean | City block
Statistical 58.88 % 66.17 %
Ad-hoc 71.21 %

K-NN 67.27 % 72.73%
Neural Network 75.23 %
Hybrid 78.18 %

Themost accurate hybrid classifier used a‘oneclassifier, onevote’ mechanism (78.18 %).
Weighting the voting reduced the overal accuracy to 74.55 %. Weighting each of the
probabilities and taking the average resulted in 76.36 % of tracks being successfully
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4.6.1 Statistical template classification

The statistical templates were tested against the set of tracks used to calculate the

templates. The results are givenin Table 8.

4.6.2 Ad-hoc classification

The ah-hoc classification was tested against the marked up set of tracks. The results are
givenin Table7.

4.6.3 K-nearest neighbour

The k-nearest neighbour method was only tested with tracks not used in the feature vector
table. This was to allow a more direct comparison with the simple template approach,
although the test set was only asubset of that used for eval uating the other methods, so the

numbers are not as reliable. The results are given in Table 9.

4.6.4 Neural network classification

The neural network classifier was tested against the marked up set of tracks. The results
aregivenin Table 10.

4.6.5 Hybrid classification

The hybrid classifier was tested against the set of tracks used to test the k-nearest
neighbour classifier. ASKNN classificationispart of thehybrid classifier, the observations
made for testing the KNN classifier aso apply here. The breakdown of results for the
simple voting hybrid isgiven in Table 11.



Table 8 - Breakdown of statistical template classification

Correct Class when wrong

Part
Eucl. City Eucl. City

Acc 40.70% | 53.29% | 22.18% | 27.62 %
Bass 76.70% | 80.58 % | 32.73% | 34.81%

Drums | 60.42% | 6250% | 455% | 3.87%

L ead 63.97% [ 73.53% | 34.55% | 33.70 %

Overall | 58.88% | 66.17 %

Table 7 - Breakdown of ad-hoc classification

Part Correct Clessitingn
wrong
Acc 59.21 % 40.91 %
Bass 80.58 % 24.03 %
Drums 94.44 % 1.30 %
Lead 52.94 % 33.77 %
Overall 71.21 %




Table 9 - Breakdown of k-nearest neighbour classification

Correct Class when wrong

Part
Eucl. City Eucl. City

Acc 40.00 % | 53.33% | 33.33% | 46.67 %
Bass 84.62% | 84.62% | 11.11% | 6.67 %

Drums | 90.00% | 90.00% | 5.56% | 6.67 %
L ead 64.71% | 70.73 % | 50.00 % | 40.00 %
Overall | 67.27% | 72.73%

Table 10 - Breakdown of neural network classification

Part Correct GEESIET
wrong
Acc 49.67 % 24.24 %
Bass 87.25% 12.88 %
Drums 88.73 % 8.33%
Lead 80.88 % 50.76 %
Overall 75.23 %




Table 11 - Breakdown of hybrid classification

95

Part Correct GRS
wrong
Acc 46.67 % 16.67 %
Bass 84.62 % 0.00 %
Drums 90.00% 0.00 %
Lead 94.12 % 83.33%
Overall 78.18 %

Table 12 - Comparison of classifier execution time

5 Execution time
Classifier Euclidean | City block
Statistical 28.49 ms 28.48 ms
Ad-hoc 28.52 ms
K-NN 32.69 ms 31.37 ms
Neural network 28.60 ms
Hybrid 116.12 ms

4.7 Comparison of speed

Although speed of classification was not the primary concern here, and the classifierswere
not optimised for speed (other than the automatic optimisations performed by the
compiler), it isinteresting to note.

Timing analysiswas performed by reading the set of MIDI filesused totrainthe classifiers
into memory. These files were then classified as many times as possible in ten minutes.

The tests were performed on a single user 500 MHz Intel Pentium 111 running Microsoft
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Windows 2000. Theresults, givenin Table 12, show that the k-nearest neighbour classifier
isnot noticeably slower than the statistical approach. The hybrid classifier takesfour times

aslong asany other classifier, whichisnot surprising given that it uses each of the others.

4.8 Evaluation of data filtering on a music database

One of the motivationsfor classifying the tracksin MIDI fileswasto improve the quality
of data held in a music database. The effect of this was evaluated by building a contour
database consisting of acollection of 870 MIDI filesand the 100 files which were marked
up when creating the training set. The database was of the type described in Chapter 3 and
used an atomic length of 14. Secondary contours were used when both building and
querying the database.

Only accompaniments and lead partswere added. Ideally, only lead partswould be added,
but the classification systems easily confused |ead with accompani ments, so both lead and
accompaniment parts were used. The city block metric gave the best performance, so this
wasthe oneused for all classifiers. The resulting performance of the classifiersisgivenin
Table 13.

Table 13 - Comparison of classifier accuracy when considering three

part types
Classifier Performance
Statistical 82.24 %
Ad-hoc 88.97 %
K-NN 90.91 %
Neural network 90.62 %
Hybrid 94.55 %

Database queries were simulated by extracting a segment of alead part from the training
set to represent realistic queries, as they were manually classified. The set of 500 queries
wasthe sameasthat used to eval uate the accuracy of the unclassified database, see Section

3.7 for more details. The rank of the file from which the query was taken (the target file)
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was noted, along with the total number of matches found.

Thetest was run with varying allowancesfor errors, d, in the query. Note that these errors
werein additiontothosethat the pitch contour representationinherently supports (i.e. more
than changes in the exact pitch of a note). Errors were not simulated in the query, so this

assumes exact pitch contour recall on the behalf of the user.

The mode rank of targets in the tests was 1, i.e. the target of a search is more likely to
appear as the top choice than at any other rank. While this was encouraging, this did not
tell the whole story as, in the case of no classification and where d = 2, this accounts for
less than 55% of the queries. Figure 4.1 shows that, for d = 0, 90% of queries will return

the target filein the top 2 files even if a classifier is not used.
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Figure 4.1 - Graph showing the ranking of queriesford=0
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Tables 14, 15 and 16 show the recall and the average rank and number of matches, taking
into account any extremeresults. It can be seen that the ad-hoc classifier isconsistently the
best, with nearly 100 % recall and giving the smallest number of matches. The difference

between the classifiers becomes more apparent when the searches are approximate.

Itisinteresting to notethat the classifier accuracy haslittleimpact ontherecal. Intuitively,
better results should be obtained by using a more accurate classifier. The results of this
evaluation suggest that the inverseistrue, asrecall islower for the hybrid classifier (the
most accurate) while the statistically classified database shows 100 % recall. Thefact that
the accuracy of aclassifier is not reflected in the recall is probably due to themes being
repeated by several partsin one song. That is, removing a part that contains a matching
themewill reduce the weighting given to that song. In theory this should not matter, asthe
improved removal techniqueis applied to the whole collection, but it may bethat thisalso

results in one song looking much like another.

4.9 Conclusions

This chapter has shown the application of classification techniques to improve a music
retrieval system. Some techniques are purely statistical while others attempt to bring to
bear some knowledge of the nature of the content. It can be seen that classification of the

musical part doesimprove matching, more notably when performing approximate searches.

The selection of an appropriate classifier will depend on the application. The hybrid
classifier isthe most accurate but it isalso four times slower than the others. This chapter
has also shown that, in the case of aretrieval system, the most accurate classifier is not
alwaysthemost desirable. Thead-hoc classifier isagood all-round choiceasitisrelatively
accurate, is one of the fastest to execute and was shown to be beneficial in aretrieval

scenario.

Theaccuracy of theclassifiersisshownto be extremely good when considering threetypes
of musical part, asmuch as 94%. Thisis high enough for usein an automatic system, such
asan automatic I nternet indexing system or acontent-based navigation system. Other types
of classifiers may perform better on the difficult problem of differentiating between

accompaniment and lead.



Table 14 - Ranking of targets using exact matching

Classifier Found | Meanrank | Mean set size
None 100.0% 9.79 16.31
Statistical 100.0% 7.79 12.09
Ad-hoc 99.8% 6.91 11.47
K-NN 98.8% 7.21 11.73
Neural networ k 94.4% 6.98 11.54
Hybrid 96.6% 7.28 12.04

Table 15 - Ranking of targets allowing for one error in the query

Classifier Found | Meanrank [ Mean set size
None 100.0% 13.04 27.67
Statistical 100.0% 10.49 23.22
Ad-hoc 99.8% 9.16 20.51
K-NN 98.8% 9.78 20.96
Neural network 94.8% 9.30 20.52
Hybrid 97.0% 9.68 21.43
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Table 16 - Ranking of targets allowing for two errorsin the query

Classifier Found [ Meanrank | Mean set size
None 100.0% 23.32 91.35
Statistical 100.0% 18.99 76.88
Ad-hoc 99.8% 15.94 62.69
K-NN 98.8% 17.10 64.17
Neural network 94.8% 16.05 60.96
Hybrid 97.0% 16.92 63.88
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5 Navigation of music

The previous chapters have demonstrated novel techniques for fast and accurate retrieval
of musical content. Recall that the motivation for investigating and developing these
technigues was to exploit the similarity between retrieval and navigation. This chapter
considers the application of these techniquesto navigation of music. The ssimpler case of
tempora navigation, and the architecture developed to support it, is described first. The
architecture is then extended to cater for content based navigation. The devel opment and
testing of a set of tools to provide proof of these concepts is also reported. This chapter

presents an extension of the work reported in [Blackburn98].

5.1 Temporal navigation of music

It was explained in Section 2.2 that temporal navigation isthe following of links that are
based entirely on timeinformation. Temporal navigation workswith any temporal media,
such as audio or video. The method of capturing of the time information used to resolve
the link is application specific. The result of the capture will be either atime range or a
point intime. The user interface will have alarge impact on which representation is used,
as aradio might use asingle ‘link’ button while a computer-based archive viewer may
allow the selection of arange. Whichever representation is used, the concept is the same.
At any time whilst playing a piece of temporal media, a user may ask for alist of links
related to that media.

A system which supports temporal navigation can be implemented with relative ease. It
takes atime sel ection and something that identifies the mediabeing played (perhaps afile
name of the URL of astream) and searches adatabase of links. Thisis compared with the

link information in alink database to determine thelist of links availableto the user at that
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point. The information in the link database, which essentially consists of stream and

position information in this case, is generated by the authors of links.

One scenario that usestemporal navigationiswhereauser islistening to anewsbroadcast.
News broadcasts typically announce the headlines at the beginning of the programme,
which isfollowed by the full stories. On hearing a headline of interest, a user may ask to
jump to the full story for that headline without the need to listen to the other stories. Upon

hearing atruncated interview, the user might then follow alink to the unedited interview.

Theideacan aso be applied to live streams, such asaradio broadcast. Aslive streams can
be thought of asinfinite, the timing information used for resolving links can not be based
on aposition in astream. The nearest equivalent isto use the current time, i.e. thetime at
which the stream was broadcast. The operation of the link database is unlikely to be
affected by this scenario, as it just has to resolve time periods into available links. The
more troublesome implication isthat the linkswill probably haveto be created in realtime
if itisalive performance. Thisisless of a problem when the ‘live’ broadcast is actually

apre-recorded program that is being transmitted on the stream.

Tempora navigation is similar to embedded hypertext (as found on the world wide web)
inthat linksare not based on content but on the position in the document. Thisisuseful for
mediafiles, such asdigital audiofiles, as softwareto extract content from such filesis not
currently reliable enough for general use. Like embedded links, there is a considerable

overhead in maintaining the linkbase.

5.1.1 System architecture

A system was devel oped which implemented temporal navigation of mediadocumentson
aMicrosoft Windows 32-bit platform (Microsoft Windows NT v4). The architecture for
the system is shown in Figure 5.1. A link-enabled application plays some media from a
digital library. Upon the link functionality being invoked (perhaps through the use of a
‘link’ button) the application communicates the selected endpoint to the Link Manager.
The Link Manager is a software component that persists for the duration of the user
session. It usesone or morelink servicesto resolve the endpoint agai nst databases of links.

Thelist of available linksis then presented to the user.
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Link-enabled Available Links
Application |[— Link Manager —> ;
Display
;
Link
Service

Digital Link
Library Database

Figure 5.1 - The architecture used for temporal navigation

An endpoint identifies the document and a position or duration within the document.
Endpoints are communi cated between the components using avery simple messagewhich
is compliant with URL syntax. Links may consist of multiple source and destination
endpoints; endpointsinlinkscould carry alternative representations(e.g. text, thumbnails)
so that it would be possible to navigate through the hyper-structure without accessing the
temporal mediaat all. These formats were adopted for simplicity during development: in
due course they could be adapted for interoperability with SMIL, XLink and XPointer.

5.1.2 The Link Manager

m Link Manager

Pocorties L]

'
L:\GrmichaeMFligure. mp2 =]

L:AGrichaesHimlsfaith,htm
L:AGrichae~Htmlhzta, hitm
L:AGrmichael Htmlbultimate. htm
L:\GmichaelwFfigure. txt

Figure 5.2 - A screen shot of the Link Manger

The Link Manager component, shown in Figure 5.2, receives source endpoints from the
other tools and resolves them using a link service. This link service could be a local
linkbase or possibly aremote Open HypermediaProtocol (OHP) compliant service. It also

functions here as the available links display. Following a link is achieved by double
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clicking on the entry in thelist or, if the 'Auto Follow Links option is enabled, it will be

followed as soon asiit is resolved.

Thesoftwarewasdevel oped to expl orethe conceptsbehind navigation; therigorousdesign
of auser interface was not considered and is beyond the scope of thisthesis. For example,
displaying the source endpoint (at the bottom of the Link Manager window) was only
intended for demonstration purposes; it is not envisaged that the user would need to see
thisinformation.

5.1.3 The Linked Player

ML:'\Hedia\nhﬂm 298 mp3 - Link Player [playing]

-

AL K

Figure 5.3 - A screen shot of the Linked Player playing afile

The Linked Player, shown in Figure 5.3, isagenera purpose media player (essentially a
wrapper for the operating system multimedia capabilities) that can send source endpoint
information to the Link Manager, either automatically or asaresult of user interaction. It
isdesigned to resemblethe original Media Player for Windows, atool that many usersare
aready comfortable with.

Theplayer hasseveral optionswhich control when an endpoint issent tothe Link Manager
for resolving. The ‘Link on Play’ option sends an endpoint whenever the play button is
pressed. ‘ Auto Link’ sendsan endpoint morefrequently, approximately every second. The
size of the selection sent to the Link Manager may be changed by using a context menu on
the link button.

5.1.4 Summary

The system was tested by following links from digital audio, video and MIDI files. The

news broadcast scenario was implemented and run successfully. No link creation tools
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were devel oped dueto the small scale of the experiment (i.e. just one person). Thiswasnot
a problem for authoring one-off links, such as linking a single headline to a full story.
Where the link management problem became noticeable was in creating links from
multiple endpoints. A link was created from the chorus of a piece of pop music to aURL
giving someinformation about that music. Thelink had to be authored for each occurrence

of the chorus. This had to be repeated for two alternative arrangements of the same song.

The use of an external linkbase meant that the links could be administered without
affecting the mediathat isthe subject of the links. The advantage of this, over embedding
the links in the document, was that al links could be listed instead of searching for them.
Thisbecameimportant when preparing ademonstration of the softwarewhich required the

locations of the media and the related links to move.

The systemisuseful inthat it isageneral approach that works for any time-based media.
Thedisregard for content meansthat timeisnot spent extracting content which can be both
difficult and time consuming. The problem of matching content based endpointsisavoided

and is simply a matter of matching ranges of numbers (time stamps in this case).

5.2 Content based navigation of music

The previous section has shown that temporal navigation works but has its limitations.
Each occurrence of the chorusin apiece of music had to be linked separately, even though
they linked to the same information. It is desirable to be able to author alink on content,
so that the content of the chorusislinked to some information, requiring only one link to
be created and maintained. This section discussesthe application of the principlesof music
retrieval to navigation. The development of a set of tools to navigate music is also
described.

5.2.1 The system architecture

The temporal navigation architecture is extended to support content based navigation
(CBN), as shown in Figure 5.4. Naturally, this requires content to be extracted from the
media being played. A full representation of the content is neither required nor used,
preferring to extract a set of features that support matching against features held in a

linkbase.
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One approach to CBN, and the one taken in the system devel oped, isto use the same link-
enabled applications and to have the Link Manager call a separate component to extract
the features. This has the advantage that the media player does not need to understand the
content that it is playing. Indeed, the media player may not be aware of (or have accessto)
the underlying content, as is the case with the Linked Player. This also alows temporal
linksto be used along side content based ones, asthetemporal information is passed to the

Link Manager in the same way for both temporal and content based navigation.

Link-enabled Available Links
Application |[—» Link Manager —» .
Display
{\ 1\ ¢
A / /
Feature Feature Link
Extractor | (Matching +| | Service
Retrieval I
8 - Rr-e:gr-og-6§§ ---------- > 8 8
Digital Contour Link
Library Database DatabaSe

Figure 5.4 - The architecture extended for content based navigation

In some applications, there are alternatives to extracting the features at the Link Manager.
If the media player deals directly with the content being played, the features could be
extracted by the player. Extracting the features here, or converting the content into amore
suitable representation than the raw media, saves time as the media does not need to be
accessed twice (i.e. once to play it and once to extract features). This does have
disadvantages, one of the more subtle is that passing a segment purely as content to the
Link Manager removes all context associated with that segment. This may not matter for
primitive content based links but precludes the use of intelligent link matching that could
disambiguate features, a textual analogy might be the word *bear’. The meaning of the
word ‘bear’ depends on the context associated with it. Removing this context forces the
link to be applied blindly and does not allow the link author to specify the noun *bear’ as

the source endpoint of alink.

Both this scenario and the one implemented presume client side feature management is

desirable, asthe Linked Player and Link Manger operate on the user’ s machine. Thisalso
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assumes that it is practical to extract features on the client machine, i.e. it is fast enough
to perform the extraction. The feature extraction could instead be performed remotely,
perhaps by dedicated extraction services, or in the link services themselves. This allows
thefeature extractionto be platformindependent, which may help thedevel opersof feature
extraction components as developing for one platform will support all others. It does not
require the client machine to be powerful, or for the media player to know about the
content. Also, in the case of extraction at the link server, it does not require the Linked
Player to understand how to convert a media segment into features appropriate for each
server. As each link server may employ different representations for linkbases, even for
similar media, this can be a big advantage. Remote extraction is one of the most general
solutions and would al so be the obvious choice except for one negative point. Each service
that extracts features must obtain acopy of the mediaclip fromwhich to process. Thiscan
be a large amount of data in the case of complex media, such as video, which requires a
network with a high bandwidth. The media must also be accessible by the server, which
excludesall mediaon astandard client machine that does not make al local filesavailable
viaaweb server (or some other suitable mechanism, e.g. FTP). Thisgeneral solution also
places alarge strain on the servers, as features must be extracted for each link resolution.

Scaling this approach to handle thousands of usersis also troublesome.

There is no obvious right solution to the problem of where to extract the features. The
approach chosen for the experiments was probably appropriate, given that the Linked
Player has no knowledge of the content and that the link service was implemented as a

process local to the client machine.

5.2.2 Adapting the contour database for navigation

The pitch contour retrieval database, described in the previous chapters, currently returns
a file name when it is given some musical content. Recall that the difference between
retrieval and navigation is that files containing some content are returned in the case of
retrieval but that files (or URLS) relating to some content are returned in the case of
navigation. Thefileis stored asastring in each case, so it is clear that the structure of the
database does not need to be modified, only the procedure that associatesthe name of afile

with its content.
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The software tools were extended to allow an arbitrary string to be associated with some
content. The path of thefile containing the content was still retained, asit might be needed
by some query validation process. An additional file path could aso be stored. Thiswas
intended for associating musical content, such asaMIDI file, with thefile from which the
content was extracted. Thisisto support scenarioswhere navigation is performed fromthe

soundtrack of a video.

Given the higher quality of data held by the database and, by inference, asmaller number
of entries to index, the process may be enhanced for navigation. Firstly, the accuracy
should beimproved, so the atomic length can be reduced to decrease the size of thelookup
table. Secondly, the ID referred to in the contour database may reference a structure more
complex than just a filename. It could contain the full contour, which may be checked

against the query contour.

The music linking example given in Section 5.1.4 was used as a proof of concept. The
content of the chorusof Axel F. (by Harold Faltermyer) waslinked to aURL of aweb page
discussing the film Beverly Hills Cop, from which the music is taken. Only one link was
authored which was enough to associate all occurrences of the choruswith the URL, inall

arrangements of the song.

Thisis the first known implementation of a content based navigation system for music’.
Theuse of theindexing techniquesfrom previous chapters ensuresthat it isfast enough for
an interactive system. The time taken to resolve a query will be identical to the retrieval

timings given in Section 3.8 plus the overhead of extracting the content.

A detailed evaluation of the effectiveness of the music database for navigation is not
currently possible. A realistic evaluation requires areal linkbase to evaluate. The tools
devel oped were not intended to be used as part of auser trial asit isout of the scope of this
thesis; most of the links must be manually entered into the linkbase. Due to the lack of a

suitable linkbase, no evaluation was attempted.

"While MAVIS supported content based navigation of digital audio the content
representation (FFTS) made it impossible to replicate the scenario given here. For one link to
work across severa arrangements requires the endpoint of the link to sound nearly identical
(same combination of instruments played the same way).
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5.3 Notes on implementation

Theapproachto navigation takeninthisthesis, namely to extend retrieval techniques, may
appear to be so natural aroute asto be inconsequential. Thisis misleading as developing
any system for navigation of audio, content based or otherwise, is not atrivia task. It is
only because of the approach taken that navigation would appear to bethelogical next step
fromretrieval. This section gives some insight into the scale and structure of the software
developed.

The retrieval engine described in the previous chapters was written in C++ using the
Borland C++ Builder development environment. The core functionality was developed as
aset of libraries that could manipulate MIDI files, create and use an index file and finally
manage the not-so-small task of query processing and result merging. The set of libraries
consist of 25,000 lines of source codein total (including comments and white space). The
Microsoft Windows specific code adds several thousand lines to this count (for just the

retrieval tools).

The majority of the audio navigation system, detailed in this chapter, is designed purely
for theMSWindows platform. Thisisafurther 12,000 lines of source code, although that
includes basic XML parser and support for the Open Hypermedia Protocol (OHP).

The navigation system implementation closely follows the architecture diagrams given
earlier. The Link Player uses a COM (Common Object Model) object to communicate
endpointsto the Link Manager. (Incidentally, the use of COM has the side effect of being
usable from many scripting languages.) A link server is implemented as a COM object,
which allows new servers to be implemented without modifying the code. The Link
Manager can be configured to use different link servers and linkbases. The feature
extraction is currently embedded in the Link Manager, although this could also be

modularised in asimilar manner.

5.4 Using classification in navigation

Classification has usesin both temporal and content based navigation, although one could

argue that the temporal caseisaform of the latter as the temporal location of content can
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be determined. The classification could be used as a parameter to link resolution. This
enablestemporal linksto be authored on particular parts of themusic, i.e. from 20 seconds
to 30 seconds of the bassline. Similarly, content based navigation would allow an anchor
to take the form of ‘lead lines that sound like this'.

Reliable classification can be used to enhance a content based navigation system by
allowing more precise (but still general) linksto be authored. For example: ‘ basslineslike
thisonearelinked to someinformation’. Therecall accuracy of alink database when used
in conjunction with part filtering has yet to be evaluated. It should prove to be at least as
useful asfor retrieval, due to the fact that only a subset of the music collection is stored.
Implementing thisconcept would requirethe | D giveninthedatabaseto refer to astructure
contain the additional conditions of the link applying, such as valid part types. Thiswas
not investigated further as it is an extension of content based navigation and so is not

directly the focus of thisthesis.

55 Conclusions

This chapter has shown how musical pitch contours can be used as features for content
based navigation. An extensible architecturefor temporal navigation hasbeen showntobe
effective. The architecture has been extended to work with content of a restricted set of
mediatypes(i.e. MIDI files) to provide content based navigation. Advantage was taken of
thesimilarity between content based retrieval and navigation by utilising the same content
matching techniquesin both cases. The content based navigation system described is the

only one known to support music at the score level.

Early versions of these tools formed part of a technica demonstration given at ACM
Multimedia ‘97 in Seattle. Since then, further requirements of auseful CBN system have
discovered as a side effect of developing the prototype tools. For example, a history list
was added to the mediabrowser, asisnow common among web browsers and so expected

of any competent navigational system.



6 Conclusions

This thesis has investigated the content based retrieval and navigation of music. It has
presented novel techniques for fast retrieval and architectures, and prototype tools, for
navigation. These elements have been drawn together to present the first known system
capable of navigating music by its content. The melodic pitch contour has been shown to

be a powerful and flexible representation of this content.

It has presented a fast method of retrieval if music which uses contour n-gramsto index a
collection of MIDI files. Approximate lookup of theindex is supported through the use of
query expansion. Errors can be simulated in short queries, whilelong queries may be split
to avoid errors. The use of a custom database format has been shown to be the fastest,

although the text retrieval engine is not too slow.

A new representation, secondary contours, was introduced as a complementary
representation that does not require the development of additional indexing techniques.
This was shown to improve accuracy while adding little overhead to the search process.
Using a secondary contour in parallel with aprimary one was shown to be more powerful

than using a representation with five pitch classes.

The results of the index lookup must undergo several stages of verification before a
concretelist of matches can be presented to the user. In practice, thefinal check against the
source file is not usualy required. The use of secondary contours as an additional

representation proves successful.

Thehandling of long queriesiscurrently optimised for fast index lookup but this can result
in atrade off against the accuracy of anindex only lookup and can actually take longer, as

there are more candidate files.
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Chapter 4 explained the verbose nature of pitch contoursin MIDI files and showed that
filtering of content isrequired for large databases. M ethodsfor the classification of musical
parts (or roles) were devel oped and evaluated in the context of retrieval. Some techniques
were purely statistical while others attempted to bring to bear some knowledge of the
nature of the content. It could be seen that classification of the musical part doesimprove
matching, more notably when performing approximate queries. The ad-hoc method isthe
most accurate and is also the fastest.

Musical pitch contours were shown to be useful features for content based navigation in
aprototype system, which isbelieved to bethefirst of itskind. An extensible architecture
for temporal navigation was shown to be effective. The architecture was extended to work
with the content of arestricted set of mediatypes(i.e. MIDI files) to provide content based
navigation. The similarity between content based retrieval and navigation was utilised and

the same content matching techniques were used in both cases.

6.1 Future work

While this thesis has focussed on its particular contribution, the work has raised some

interesting questions and directions for research stemming from this.

6.1.1 Developing and evaluating a real linkbase

The nature of the dataindexed in alinkbase islikely to be different from that in an index
intended for retrieval, which may have consequencesfor theindexing techniqueused. This
can not be proved until real linkbases are devel oped. Thisthesishas proved the feasability
of temporal and content based navigation of music. The next step is to develop a set of
tools that allow non-technical users to create and manage linkbases. Only then can a
detailed evaluation be performed.

6.1.2 Notational differences for matching

Due to MIDI being a performance oriented standard, key presses rather than notes are
communicated. This means that C* and D" are transmitted as the same key on a piano
(which they are). The difference is not important to the listener but it isto musicologists.

Although similarity matching in music concentrates on pitch, comparison of the notation
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might allow better use of the existing data. As MIDI files are the most widely available
sources of music, some method of determining the correct pitch notation will be required.
Thisissue has already been investigated by Blombach [ Blombach95] who has devel oped
an algorithm for achieving this. Thiswould givefive extrapitch classes per octave, taking

the total number from twelve to seventeen.

This thesis has not evaluated this approach, as melodic pitch contours would ignore this
additional information. Similarly, pitch contours could, in principle, be applied to
microtonal music, or indeed and scales other than the standard 12-note equally tempered
scale.

6.1.3 Improving retrieval

Itisclear that the accuracy of theretrieval technique will play alarge part in the usability
of asystem for navigation. The indexing methods presented in this thesis are believed to
be suitable for use in a linkbase. Currently, 85% of queries result in the target song
appearing in the first four matches when there are 7,600 complete songs in the database.
The level performance will drop as more files are added, eventualy dropping to an
unacceptablelevel. Thereareanumber of improvementsthat could bemadetotheretrieval

system described in this thesis.

Scale the contour counts. The current implementation notes the number of occurrences of
each sub-contour in afile on adding it to the database. Thisis an absolute number which
anecdotal evidence suggests can cause problems. This is because longer or more
complicated pieces of music will naturally contain more sub-contours. This causes the
systemto rank larger MIDI files higher than smaller ones. Thisisespecially evident when
locating different arrangements of the same song. Normalising the sub-contour count on
aper filebasis, so that the count reflectsthe relative relevance of that contour for that file,
should stop this. Normalisation has the consequence that one stage of the results checking,

ensuring enough sub-contours per match, can no longer be performed.

Addtracksindividually. Stephen Downie showed that hisdatabase did not need to storethe
precise location of contours, only the name of thefilethat they occur in. The accuracy was

only marginally improved by ensuring matches were complete. The sameis probably not
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true for adding an entire MIDI file as one entity, as there are many more sub-contours per
file than per track. Adding the tracksin aMIDI fileto the database one at atimeislikely
to improve accuracy overal. This concept was not examined further as links were
implemented with a single contour as the source of the link.

Using rhythm contours. The use of rhythm contours has been reported by many peoplein
the field to be beneficial to retrieval. The improvement has not been as great as adding
more pitch classes but is still worth considering. One of the advantages with adding
support for rhythm contoursto the system described inthisthesis, isthat it can makedirect
use of the underlying contour database. This would be similar to the way in which

secondary contours are currently supported.

Quantize the MIDI before extracting pitch contours. Recall that MIDI is a performance
oriented standard asamusician isunlikely to play apiece of music exactly likeitiswritten
down on paper. Because of this, and the limitations of M1DI, thetiming of notesinaMIDI
filewill be slightly out (when compared with the musical score). This can result in three
notes, that appear to alistener to sound simultaneously, starting at slightly different times.
Thiswill have an impact on the contour generated from that performance, as what should
be one pitch transition is recorded as several. Most MIDI sequencers allow amusician to
tidy the note timings (quantize), which would stop thisfrom happening, but somefeel that
this can remove the feeling from a piece and make it sound computer-generated. Asitis

likely that many fileswill not be quantized, it may be beneficial to apublicly used system.

Extend the system to support n-ary contours. This thesis has shown the use of secondary
contours to be a highly beneficial in retrieval, improving average results by as much as
40%. It has also shown the expressiveness of the contour combination to be comparable
with a five-pitch representation. Other researchers in the field have proved that more
accurateresultsare obtained by using arepresentation with more pitch classes. Considering
all these points, it is reasonable to expect that using atertiary contour should improve the
current system. This could be further extended to n-ary contours, although there may be

adiminishing return, in terms of space vs. improvement of accuracy.

Improvethe presentation of match relevanceto the user. The scoresare currently absol ute,

even if the contour count isnormalised per track or file. This can confuse users as queries
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of similar lengths can return wildy different scores, largely due to the type of query
expansion used. Thisissue can be resolved by either presenting the scoresin anormalised
form (i.e. the top-ranking match is given a mark of 1000 and the others given marks
relative to that) or by not displaying the scores to the user and just showing the ranking
position of each match. The former is not ideal, asit suggests a 100% match for the top-
ranking item (which is not always the case). The later is no better, as al relative match
information is lost, athough it is arguably not misleading (due to no claim of a 100%
match). Obviously, the ideal score display should show both the accuracy of each match
and how closethe matchesare. No solution wasinvestigated because thisnot an issuewith

the implemented linkbase, as all matching links are displayed.

6.1.4 Texture of music

It would be interesting to see if determining the ‘texture’ of music, through the use of co-
occurrence matrices (Haralick [Haralick73]) normally used to match texture in images,
could be used to retrieve links in alinkbase, or as an aid to classification. Co-occurrence
matrices for music would give the probability of the next note being x, given that the
current noteisy. Soif atune consisted of two alternating notes then the musical equivalent
of stripes would be represented. It is unlikely that texture alone would be enough to
identify content, asit isavery abstract concept, but could be useful in reducing the search

space.

Applying thetechniqueinreversewould also beintriguing. That is, given atexture matrix,
compose a piece of music using these probabilities. However, the value of any resultsis

of questionable value to the field of computer science.

6.2 Going beyond content

This thesis has shown that the concept of using musical content as an endpoint in a
navigation system isaviable one. The application of techniquesto further understand the
content, with a view to improving both retrieval and navigation, has also been discussed
(i.e. musical parts). Asthe size and use of musical retrieval and navigation systems grows,

it will become increasingly important to understand and exploit the semantics of music.

A content based link currently matchesaslong asthe notesare similar enough (for musical
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links). The ability to comprehend what the composer intended to convey with a given set
of notes gives much more precise control. It would make it possible to author links from
musical constructs (e.g. a chorus) or even intended mood (e.g. sorrowful, happy). This
might be described moregenerally asthe context of thelink. The development of amusical
semantic engine poses the biggest challenge in this field, although it also promises the
biggest rewards.
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