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The support for audio in existing hypermedia systems is generally not as comprehensive

as for text and images, considering audio to be an endpoint medium. Temporal linking has

been considered in the Soundviewer for Microcosm. This linking model is beginning to

become more mainstream through the development of standards associated with the World

Wide Web, such as SMIL.

This thesis investigates the application of content based navigation to music. It

considers the viability of using melodic pitch contours as the content representation for

retrieval and navigation. It observes the similarity between content based retrieval and

navigation and focuses on the fast retrieval of music. The technique of using n-grams for

efficient and accurate content based retrieval is explored. The classification of MIDI tracks

into musical roles is used to reduce the amount of data that must be indexed, and so

increase speed and accuracy. The impact of classification is evaluated against a melodic

retrieval engine.

Finally, the system built for retrieval is modified for navigation. A set of tools

which support both temporal and content based navigation is built to provide proof of

concept.
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1

1 Introduction

1.1 Motivation

A traditional hypermedia system can be thought of as containing a collection of text and

images. From an overview document that outlines the subject matter, a user may follow

links to alternative, perhaps more detailed, information from the collection. An alternative

to starting from an overview document is to search the collection for suitable initial

material. There is no widely accepted standard that allows audio to be the subject of this

level of user interaction.

In the case of speech radio this might take the form of a user listening to the beginning of

a documentary, where the features in the programme are listed, and on hearing a particular

topic of interest the user opts to jump immediately to that item; finding an interesting

interview abbreviated, the user opts to listen to the entire interview. A synchronized text

transcript is available which may also contain pre-authored links and, on hearing an

unfamiliar term, the user can ask all available links to be computed dynamically and follow

one to a glossary.

Music students could use a similar system as a learning tool. Listening to set pieces of

music is often part of their course work. The music can be distributed over a network from

a digital music library, such as the VARIATIONS project at Indiana University [Dunn99].

On hearing an unfamiliar concept, the student could find information by following links

that have been previously authored by the music lecturer. This can be very powerful if the

links are based on the content of the music, so that the link is available for every

occurrence of a theme. Retrieval of music using pitch-based queries could be used to locate

similar music. This could also be used as a research tool or as an aid to composition; it
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allows the composer to ask ‘how have others developed this theme’.

Hypermedia systems generally consider audio as an endpoint medium. The hyper-text

markup language (HTML), as used on the World Wide Web, is an example of such a

system. Text and images, through the use of image maps, may link to audio but there is

currently no reciprocal linking mechanism for audio. It is not possible to be listening to a

piece of music and to follow a link from an interesting segment to some related

information.

Temporal linking has been considered in the Soundviewer [Goose95] for Microcosm

[Fountain90]. This linking model is beginning to become more mainstream through the

development of standards associated with the World Wide Web, such as SMIL [SMIL].

Here, links may be created that are based on playback positions within a media document.

Literature regarding links based on features extracted from audio documents is almost non-

existent, with MAVIS [Lewis96a][Lewis96b] being an exception.

Current literature on audio generally consists of systems which classify and catalogue short

digital audio samples (Foote [Foote97], Wold et al [Wold96]), with the aim of helping

retrieval. Classification and retrieval of music has also been examined (Pikrakis et al

[Pikrakis96], Ghias et al [Ghias95], McNab et al [McNab96]). The only systems that

consider the navigation of audio, and where links may be based on features extracted from

audio, have concentrated on extracting and making use of consequential information that,

while identifying content, does not describe the content. As such, these systems provide

limited support for content based navigation.

1.2 The problem

One can consider retrieval as returning the names of documents which contain the query

content. Navigation can be considered as returning the names of files which are associated

with to the query content. Both applications can use the same content indexing principles,

but to reference different types of data.

For an interactive system, like Content Based Navigation (CBN), lookup must be fast as

queries are made in real-time (as opposed to off-line or batch). Waiting more than a couple

of seconds for the query to complete will be seen by the user as an inconvenience.
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Retrieval may involve large collections of music, perhaps of the order of 100,000 pieces

in the case of an Internet-based search engine. Navigation is likely to have more moderate

requirements, as only segments of music will be indexed.

Approximate queries must be supported. The quality of the music files in the system can

not always be guaranteed: they may contain errors or there may be several arrangements

of the same piece. Errors in tune recall on the behalf of the user (in the case of a user-

entered query) or in the entry of the query must also be accounted for.

Many content representations for music have been considered by researchers in the field

of content based retrieval. This thesis examines the effect of using melodic pitch contours

as the content representation. A melodic pitch contour describes a series of relative pitch

transitions. A note in a piece of music is compared with a previous note and then classified

in one of three ways: either the pitch went up (U); the pitch went down (D); or it is a

repetition (R). Thus, the piece can be converted into a string with a three-letter alphabet

(U, D, R).

Musical pitch contours are easily calculated from pitch information, such as that contained

in files conforming to the Musical Instrument Digital Interface (MIDI) standard. These

files specify, among other things, when a note is to start, what pitch and volume it is to be

played at and when to stop each note. Both pitch contours and MIDI files assume that all

music consists of notes which, while not universally applicable, covers the vast majority

of modern western music. This is assumed for the majority of this thesis. Techniques that

are suitable for other forms of music are noted where appropriate.

1.3 Contribution

This work shows that melodic pitch contours are sufficiently powerful for retrieval and

navigation of music. A specialised data format is designed and approximate string

matching techniques are employed. This format is shown to be superior to other standard

database formats with respect to the speed of retrieval.

Secondary contours are introduced as a new and complementary representation that does

not require the development of additional indexing techniques. They are shown to improve

matching while adding little overhead to the search process. Using a secondary contour in



4

parallel with a primary one is shown to be more expressive than using a representation that

has five pitch classes.

Standard classification algorithms are applied to classify the role of each track in a MIDI

file. This is then used to enhance the music database by only indexing tracks which are

likely to be the subject of a query. The effectiveness of this approach is evaluated.

The architecture for a system that demonstrates temporal navigation of temporal media is

designed and implemented. This architecture is then extended to support links based on the

content of music-based media (demonstrated on MIDI files).

1.4 Thesis structure

This thesis presents techniques which enable the use of multimedia, specifically audio and

music, as the basis of a document. A review of the related work is given in Chapter 2,

followed in Chapter 3 by an explanation of the author’s work on content based retrieval of

music. Classification of music is considered in Chapter 4, along with the effect of applying

it to a content based system. The application of pitch contours to content based navigation

is covered in Chapter 5. Finally, Chapter 6 presents the conclusions and possible future

work.
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2 Related work

This chapter discusses research relating to the topic of this thesis. It starts with an

explanation of the term ‘navigation’ and what it means to navigate audio. Music

representations are then considered before examining content based retrieval and

navigation. A discussion of open hypermedia and other issues relating to audio concludes

this chapter.

2.1 Navigation

Anyone who has used the World Wide Web is familiar with navigating around a body of

documents. Links are created either between or within documents by embedding

information at relevant points in the source document, indicating material related to that

point. The Hyper Text Mark-up Language (HTML) [HTML4] on the world wide web is

the, now classic, example of this model. An information space is navigated by activating

a link in a document, which then takes the user to the related document.

This approach to organising an information space was first proposed by Vanevar Bush in

1945 as a way of managing information overload [Bush45]. The concept was first applied

to computer documents over 30 years later in Ted Nelson’s Xanadu which considered the

links between documents to be of upmost importance [Nelson81]. This too was not a

working system but simply a mock-up of what it could look like.

The navigation systems described here differ in where the link information is stored. One

approach is to embed the links in the source document, as is traditionally the case with

HTML, although XML is changing this through XLINK and XHTML. The other approach

is to keep the links separate from the documents.
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1It should be noted that this is just one method of interacting with a link, but it is the most
commonly used and is the model employed by the World Wide Web. In HTML, the source
endpoint is implied by the location of the link in the document. Also, only one endpoint may be
specified (i.e. it only supports binary links).

In all cases, the concept of a link is the same although different terminology is often used.

A link contains at least one source endpoint and at least one destination endpoint. An

endpoint specifies a location in a document, or perhaps a whole document. In this way, two

endpoints are associated with each other so that, via an appropriate user interface, the

source endpoint may be clicked on and the destination endpoint displayed1. Some systems

support links with attributes, which allows for more powerful interaction with a document,

but the concept of associating two or more entities is common to all.

There are a couple of problems with the use of embedded links. The first being that, while

it is possible to link to any media, the source document is usually text (although image

maps are quite common). It is currently not possible to be listening to a piece of audio and

link to a web document that is related to the clip currently being played. This issue is

gradually being addressed through standards associated with the web, such as the

Synchronised Multimedia Integration Language (SMIL) [SMIL] and associated editors

[Bulterman98].

The second problem is that all instances of conceptual links must be manually

implemented. For example, if one wished to link every occurrence of the phrase

“University of Southampton” to the home page of the University, links must be created for

each occurrence of the phrase. If the location of the University page changes, all instances

of the links must be found and modified.

Searching can be considered as another mode of navigation. The user finds a phrase of

interest and searches a body of documents for other occurrences of that phrase. This can

work well in the absence of other linking mechanisms, as it is reasonable to assume that

documents containing similar phrases may concern related subject matter. The technique

was used several times to locate some of the information contained in this chapter. These

links are said to be generated automatically, as they do not require human interaction to

author them. This approach is not foolproof as a search for the phrase “baby kangaroos”

will, along with relevant documents, find documents that contain the phrase “this document
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is not about baby kangaroos”.

The process of searching usually uses an index of the documents that is periodically

generated. This speeds up the process and can be used to centralise resource, as is the case

with Internet search engines. The ‘search as navigation’ paradigm can be refined, so that

the document index is not generated automatically and, rather than identifying documents

that contain a phrase, returns a list of documents that are related to that phrase. This model

of hypermedia is referred to as Open Hypermedia and is discussed in Section 2.10.

2.2 Navigation of audio

The ability to link to specified parts of audio files, and to link out from audio files (for

example to the current location in a text transcript of a speech), is not very common but

nonetheless desirable, as the scenarios given in the introduction show. The simplest form

of this is temporal navigation.

In temporal navigation, links are based on the start time and length forming a selection in

a temporal media document, such as audio or video. These links are usually stored

separately from the media as not all media formats support additional embedded

information. Upon finding an interesting segment in the media, as indicated by the user,

a simple database query is performed to identify any links appropriate to the timing

information of that media segment.

The Microcosm Soundviewer was an audio tool which supported hypermedia links into

and out of stored audio via this mechanism [Goose95]. Using the Microcosm open

hypermedia system [Davis92][Fountain90], links could be authored based on the position

of a selection in a document. All the links from a particular audio document were found

before playing began. These links were displayed as coloured ribbons in an area above the

media time line, see Figure 2.1. These ribbons identified the times over which a link was

active. The Soundviewer also had an option where a link could be automatically activated

upon the link becoming relevant. The two-dimensional display of the links takes up

valuable space on the screen, and can easily become cumbersome where a document has

many links. It has the advantage of making the concept of temporal hypermedia easy to

understand.



8

Figure 2.1 - The Microcosm Soundviewer

An audio only environment was developed by Sawhney and Murphy, called Espace 2

[Sawhney96]. It was a prototype system for navigating hyper-linked audio documents.

Continuous audio streams were used to represent the availability of links to other

documents. The example content used recordings of conversations and discussions. It is

likely that the links were time based, due to the concentration of the project on the user

interface rather than content extraction.

Buchanan and Zellweger examined ways of specifying temporal behaviour in hypermedia

documents [Buchanan92]. The Firefly document system provided support for

synchronisation of media clips in a presentation similar to that provided by SMIL (see

below), i.e. allowing clips to occur in sequence or in parallel. Again, links between clips

were time based, although the exact timing was only resolved when the document was

displayed, as opposed to being an authoring process. Authors needed only to specify event

relationships (events could occur either in sequence or in parallel).

Using only timing information for linking works well with any temporal media, such as

video, as the content is not considered. However, it suffers from one of the problems of

embedded links: each link must be manually authored and maintained. To overcome this,

links need to be based on the content of a selection in the document.

For links based on content, the source endpoint is specified by some example content,

instead of a position in a file. Resolving a link requires the content of the source selection
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to be extracted and compared with the source endpoints in a link database to find relevant

links. This is the intended use of the Open Hypermedia model, as discussed in Section

2.10.

2.3 The Synchronised Multimedia Integration Language

The Synchronised Multimedia Integration Language (SMIL, pronounced ‘smile’) is an

XML-based initiative that aims to provide web-based interactive multimedia applications

[SMIL]. The display is split into regions through the use of a layout specification that is

given in the head of a SMIL document. Multimedia files or streams can be assigned to

these layout elements. The flow and synchronisation of the presentation is controlled by

specifying which elements must be displayed in parallel and which must be displayed in

series.

Version 1.0 of the SMIL standard specifies two methods of embedding uni-directional

links within a presentation. The first is the “a” element which is intended to be the same

as the “a” element in HTML documents. It allows a link to be formed from a whole media

object. It is not possible to describe a link that is active for a specific sub-part of the media

object. The “anchor” element addresses this shortcoming by providing support for image

maps and the temporal equivalent.

Multiple anchors can be associated with each media object. Each will specify some

location within that object. This will be coordinates for images, begin and end times for

audio and may be both for video. When used as the source of a link, the anchor element

will contain a destination Universal Resource Indicator (URI).

The destination of links uses the Universal Resource Locator (URL) format that was first

used in HTML and has now itself become a standard. Complete documents or presentations

may be referenced in the usual manner. Parts of documents or presentations may be

addressed through the use of id attributes and the “#” connector. Each media object, anchor

and “a” element of a SMIL presentation may be given an id, e.g. id = “conclusion”.

Individual elements can be addressed by appending a “#” followed by an id to the URL,

e.g. http://www.w3c.org/Presentation#conclusion.

These elements and attributes allow SMIL to be used to specify one-to-one links that must
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be embedded in the source document. Any element, or part thereof, that is the destination

of a link must be given an identifier. While this is the most comprehensive mainstream

support for linking audio currently available, it does have some drawbacks. Perhaps the

biggest is that it is impossible for an author to foresee all the parts of a presentation that

may be the destination of a link and so give it an identifier. This is an especially important

point when the person wishing to link to the presentation can not directly modify the file.

The use of embedded links in SMIL results in the same drawbacks as that shared by

HTML.

Support for SMIL is growing, with the availability of both editors and players increasing.

The official web site for SMIL lists eight players (eg: RealMedia’s RealPlayer G2) and ten

authoring tools (including GRiNS [Bulterman98]) that support SMIL in some capacity.

The biggest indication that SMIL may receive wide acceptance is the introduction of basic

support for the standard in the latest version (v5.5) of Microsoft’s Internet Explorer. A

product with a large market share is generally required before people will see any

advantage in using a new standard. There is usually little sense developing a presentation

that can only be viewed by a handful of people.

The latest working draft of the standard, codenamed SMIL Boston [SMIL20], has taken

the same constructs but modified the XML tag names to be more parser friendly. There is

an XML parser for nearly all programming languages and platforms, but these are not all

of a high standard. The most noticeable change to the SMIL specification is the removal

of hyphens from attribute names. Mixed case tag names have been used instead, so ‘clip-

begin’ becomes ‘clipBegin’. The move to incorporate more of the XML related standards

has resulted in the adoption of XPointer as a way of specifying an element that is the

destination of a link without requiring the subject element to have an identifier.

A new synchronisation type has been introduced which is similar to the parallel mode but

only allows one element to be active at any given time. This is intended to cater for

scenarios such as adding audio descriptions to a video stream to help the visual impaired.

The video stream would pause while the description is playing and then resume.
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2.4 HyTime

The Hypermedia/Time-based Structured Language (HyTime [HyTime]), can be thought

of as the precursor to SMIL in some respects. HyTime extends the SGML standard to

define ways of representing the information elements required by a hypermedia systems.

It was the first international standard to consider the representation of hypermedia objects

(as opposed to hypertext objects).

A HyTime document consists of a meta-DTD (Document Type Definition) that defines the

set of rules used by the document object, which is followed by the document objects

themselves. This makes HyTime flexible, as the document format is essentially

‘programmable’, but makes it difficult to use, as any application that supports HyTime

must incorporate a full SGML parser to be able to make sense of the document. This also

makes it difficult to author HyTime documents, as the document rules must be specified

before proceeding with writing the document body. This may be an acceptable cost in a

large hypermedia system where the HyTime document is a large one and so the relative

time taken to define the rules is negligible. This gives an insight into what was the likely

target application of the HyTime standard, as the storage layer of a large hypermedia

application.

All the above factors make it an unsuitable language for the World Wide Web. According

to Kimber [Kimber96], “for many applications, it will make sense to transform SGML-

and HyTime-based information into some optimized or proprietary form for final

delivery.”He gives an example of a HyTime document being rendered to HTML for use

on the Web.

It is clear that HyTime is a complex standard which, while flexible and general, suffers for

this. There are very few applications which implement the standard, although there are

more SGML-based editors which help an author of a HyTime document. It is also clear

that SMIL is easier to understand and simpler to write. The ordering of objects in HyTime

requires defining an axis (in this case ‘time’) before objects, or groups of objects, can be

placed on that axis.

SMIL is simpler than HyTime but is not as flexible or generic. These qualities make it a
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standard that is suitable for the World Wide Web. It standardises a straightforward

approach that can be implemented relatively easily.

2.5 Content representations

Previous sections have discussed several uses of media content in retrieval and navigation.

How this content is represented is important, as it affects the choice of algorithms that may

be used for resolving content based links. For example, text is a suitable content

representation for a recorded speech and many text retrieval algorithms already exist. Some

appropriate representations for music, and their suitability for comparing / matching music,

are discussed here. Most of these can be obtained by performing feature extraction on

another, usually lower level, representation. As such, feature extraction can be thought of

as representation conversion, taking a low level representation and identifying higher level

features.

Wiggins et al [Wiggins93] described a framework for evaluating music representation

systems. They considered a representation to be useful for one, or more, of three purposes:

recording, analysis, or composition. They examined the expressive completeness (the range

of musical data which may be represented) and the structural generality (the range of

musical structure) of each of the representations. Precise values for completeness on

generality were never assigned for any of the models they looked at, preferring to use these

concepts to order the representations in two-dimensional space.

The representation used for content based retrieval and navigation systems may depend on

where the query comes from. For example, a representation which allows quick, exact,

matching might be used when linking from selections in MIDI files, as a precise query can

be expected.

The range of currently available content representations is diverse. Some represent

essentially the same data, perhaps in a format suitable for a specific project. As such, an

exhaustive survey covering all representations of music and audio that are relevant to this

thesis is both impractical and of little use. The following sections give an overview of the

properties of some of the representations used for music in its different forms: from

composition to a physical sound wave.
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It should be noted that some of the representations discussed here (e.g. MIDI) assume that

music consists of melodic note events. As explained in the first chapter, this assumption

must hold true for melodic pitch contours, the subject of this thesis, to be applicable.

2.5.1 The musical score

The musical score is a representation used by a composer to instruct a musician on how to

perform a particular piece of music. As such it is the definitive document which conveys

all the notational nuances which are lost as soon as the piece is performed. It is also likely

to contain some structural information which is also lost in performance, such as repeating

bars. There are many existing file formats which may be used to store musical scores, such

as the Standard Music Description Language (SMDL) [SMDL] which is an SGML-based

format. The expressive completeness and structural generality are high.

2.5.2 Performance data

The Musical Instrument Digital Interface (MIDI) [MIDI] is a standard which allows digital

instruments to transmit performance data between each other. This performance data may

be stored in MIDI files (see section 2.13), so recording the musician’s performance. The

MIDI file format is a linear, time stamped, sequence of events (a detailed explanation is

in Section 2.13).

Due to the performance being a musician’s interpretation of a musical score, one could

argue that more information is contained in the MIDI stream. However, a MIDI stream can

also be derived from the score and, due to the linear nature of the recording, a lot of

structure and markup is lost. It is more accurate to say that the MIDI representation may

contain different information to the score.

2.5.2.1 Notational differences

Most performance oriented standards are concerned with exact pitch, rather than symbols

on a stave, being communicated and stored. This results in C# and Db being stored as the

same pitch (which they usually are). This difference is not important to the listener but it

is to musicologists. Although similarity matching of music concentrates on pitch,

comparison of the notation might allow better use of the existing data. This requires an
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Figure 2.2 - A musical score and its melodic pitch contour
for “Happy Birthday”

algorithm for determining the correct pitch notation. This issue has been investigated by

Blombach [Blombach95], who claims to have developed an algorithm that achieves this.

Hewlett also explains the usefulness of retaining the ‘spelling’ of pitches and notes that 40

enharmonic spellings are required per octave [Hewlett92]. He developed a base-40

representation which was used as part of a complex binary format that allowed a small set

of classical music to be searched on a machine with limited memory. The base-40 form is

the most complete one found for notes and is aimed at people who wish to analyse pieces

of music.

2.5.3 Melodic pitch contours

Music is recognisable irrespective of the key it is played in, a property which shows that

matching on the exact sequence of notes is not desirable. Exact intervals can be used for

matching, identifying the interval (in semitones) between the current note and the last, as

this is independent of key. Dowling suggested that the pitch direction, simply noting

whether the pitch went up, down or was repeated, is useful in some situations [Dowling78].

This representation is referred to as a melodic pitch contour. Lindsay discussed how pitch

contours are not a new idea, indeed they were used as a form of musical score for chants

[Lindsay94].

A melodic pitch contour describes a series of relative pitch transitions, an abstraction of

a sequence of notes. A note in a piece of music is compared with the previous note and

then classified in one of three ways: either the pitch went up (U); the pitch went down (D);

or it is a repetition (R). Thus, the piece can be converted into a string with a three-letter

alphabet (U, D, R). For example, the introductory theme to Beethoven's 5th Symphony

would be converted into the sequence: - R R D U R R D. Notice that there is one less

symbol than notes as only the transitions between notes are recorded. An example of a

musical score and its associated pitch contour is shown in Figure 2.2.
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2Technically, there need only be more than one pitch class if more non-conventional
assignment is used, such as ‘up’ and ‘not up’. However, no research has been published which
either suggests, uses or evaluates this approach.

Melodic pitch contours discard a lot of information which might otherwise reduce the

search space, such as rhythm information and the size of intervals between notes. This

results in the representation being an under-specification, effectively having a certain

amount of approximate matching built in. If the notes in two pieces of music rise and fall

in the same order then they are considered as matching, regardless of the amount of change

in pitch.

The melodic pitch contour described above is not likely to discriminate enough in some

circumstances (e.g. comparing short clips of highly similar music). The other extreme is

to use the exact size and direction of an interval between notes. The compromise is to use

a number of interval classes, so that the UDR representation is considered to have three

interval classes. The number of classes must be odd if one is used for repeated notes while

the remaining classes are split equally to represent both positive and negative intervals2.

This thesis refers to the three-class representation as being a gross melodic pitch contour,

due to its very general nature. Downie has evaluated the effect that the number of pitch

classes has on recall and precision in his MusiFind system (more below).

2.5.4 Rhythm contours

The rhythm of a piece of music can be generalised in a similar way to musical pitch

contours. The length of a note in a piece of music is compared with the length of the

previous note and then classified in one of three ways: either the note was longer (L); the

note was shorter (S); or it is the same length (R). Thus, the piece can be converted into a

string with a three-letter alphabet (L, S, R). When determining the rhythm class of a note,

an allowance must be made for small differences in the lengths of ‘repeated’ notes. The

obvious example of where this is needed is for music that is entered by hand on a piano

keyboard; reproducing notes of exactly the same length is beyond the capabilities of a

person. A common practice is to base the threshold on the length of the previous note. If

the length of the current note is half that of the previous one then class the current length

as shorter. If it is twice that of the previous one then it is classed as longer. Remaining
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notes are said to have the same length.

Unlike melodic pitch contours, this representation is not grounded in psychology theory

but is intended to make finding similar pieces easier. It should be noted that there is no way

to keep rest information. It should also be noted that it is common to use the note onset

interval as the length, i.e. the distance between one note starting and the next note starting.

This is often to overcome a limitation of MIDI where a note may sound for a while after

the ‘note off’ signal is received due to the sustain of the current instrument. The problem

is also present on a real piano, where the note may still sound even though the key has been

released. One can not be sure what the user has heard as a result of this ambiguity, so the

start of the next note is used as a concrete event.

Arbee Chen [Chen98a] has examined the use of rhythm as a means of retrieving songs.

This used the note durations as given by a musical score and included a representation of

rests. Analysis showed that five mubols, the symbol for one note, were enough to uniquely

identify one song out of 102 folk songs.

2.5.5 The Fourier transform

The Fourier transform relies on the principle that any waveform can be described as the

sum of component sine waves, each at a particular frequency, amplitude and phase. The

Fast Fourier Transform (FFT) is an efficient algorithm which approximates the Fourier

transform for sampled signals by using a divide and conquer technique. Given a digital

audio file, a table which identifies the amplitude of each component frequency, at any

moment in time, may be calculated. An inverse of the transform also exists, so that digital

audio may be reconstructed from a frequency spectra.

There is an uncertainty principle that affects the precision of the FFT algorithm. There is

a trade off between the accuracy of the timing and the accuracy of the frequency table. The

signal must be analysed in n-sample sized chunks (called windows). Small windows allow

the timing to be accurate, but the small number of samples limits the ability to accurately

identify the frequency. The inverse is true for large windows.

The FFT is directly related to the digital audio representation, functionally carrying the

same information, so it can be used to express almost anything. However, like digital
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audio, it lacks explicit musical structure.

The Fast Fourier Transform calculates the Discrete Fourier Transform (DFT). Another

commonly used transform is the Discrete Cosine Transform (DCT). It is from the same

family as the DFT, essentially being a simplified version of the DFT.

2.5.6 Digital audio

The rawest form of representation is obtained by digitising an audio signal. The amplitude

of a signal is converted, from an analogue form to a digital one, several thousand times per

second. For example, professional audio recordings currently take 48,000 or 96,000

samples per second. The process can be inverted to reproduce a signal very close to the

original. Once in the digital domain, the audio data may be subjected to lossless or lossy

compression.

A common storage format for digital audio is the wave file. This is a Resource Interchange

File Format (RIFF) based format that may contain meta-data along with the digital audio,

although home users tend not to use this feature. It is possible to extend the format to

contain alternative representations discussed above.

A lossy compressed form of audio that is rapidly gaining popularity is the audio layer

(layer 3) of the MPEG-1 specification (see below), commonly referred to as MP3. This

uses psycho-acoustic masking to reduce the amount of information about the signal that

needs to be stored. It was originally developed as part of the audio/video compression

standard used by VideoCDs. It has gained a lot of support due to the high compression

ratio (12:1) that still retains CD quality sound (as perceived by a panel of listeners). The

reason for the recent increase in the use of MP3 files is probably due to the ability to

transmit audio over the Internet in near-CD quality sound, assuming a reasonably high

quality home connection (e.g. a cable modem or ISDN connection).

2.5.7 Meta-data and associated standards

Much of the information which content based systems have to work hard to extract was

probably initially available when the document was authored. Having some way of keeping

this information would improve the quality of content based applications. The answer is
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to keep meta-data, that contains descriptions of the content, with the distributed media. Of

course, this can only apply to new media; historical archives will still require the content

to be recognised before meta-data can be stored.

Meta-data is most generally described as data about data. What this actually means will

depend on the data type and how it is being used. This may be bibliographic information,

such as the title and year of publication of a song. The term also refers to alternative

representations of the material that may be used for analysis or search.

2.5.7.1 Meta-data in digital audio files

There are several extensions to the MP3 file format that provide varying amounts of meta-

data. The simplest, and most common, is the ID3v1 tag which may be found at the end of

many MP3 files. It contains basic track information: title; artist; album; year and a

comment. These fields may contain up to 30 characters, the exception being year (four

characters).

The overly specified ID3v2 tag may be found at the beginning of the file and is designed

to be flexible and overcome the limitations of the original ID3 tag. There is no limit on the

size of fields and new fields may be added simply. Although it allows much wanted fields,

such as remix artist and album artist, and removes the constraining field size limit, it is

unlikely to be widely accepted. This is due to the format being very complex and the tag

being stored at the beginning of the file, making modifications to the tag hard-disk

intensive.

The biggest problem with the first version of the tag was the limited field size. There is a

new meta-data format emerging for MP3 which is as simple to manipulate as the ID3v1

tag but allows 256 characters per field. It also includes support for embedding lyrics in the

file and so is referred to as the Lyric3.2 tag. There is a standard method for time stamping

the lyrics which, while designed for karaoke files, provides a rich set of meta-data for

content based retrieval and navigation systems.

2.5.7.2 Associated standards

As part of the International Organisation for Standardisation (ISO), the Moving Pictures

Expert Group (MPEG) has developed a family of multimedia standards. These are:
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! Storage and retrieval (MPEG-1)

! Digital television (MPEG-2)

! Multimedia production, distribution and content access (MPEG-4)

! The multimedia content description interface (MPEG-7)

! The multimedia framework (MPEG-21)

The first of the family, MPEG-1, was designed to allow storage and retrieval of moving

images and accompanying audio. The aim was to provide a data stream that required a

bandwidth that was no more than the data access rate of a CD-ROM drive contemporary

with the year of publication of the standard. The MPEG-2 standard strives for a higher

resolution, and therefore a higher bit rate, that is comparable with that used in digital video

studios. MPEG-2 can be thought of as the next generation of the MPEG-1 standard. While

this is somewhat of a simplification, MPEG-2 remains backward-compatible with MPEG-

1. Both standards address the coding and transfer of low-level data for the purpose of

storage and playback. As such, they are not directly related to this thesis, other than that

they may be used to encode the temporal media discussed herein.

The MPEG-4 standard moves away from the encoding of the media to consider the process

of multimedia production. Nack and Lindsay [Nack99] sum up the aims of MPEG-4:

“MPEG-4 aims to provide a set of technologies to satisfy the need of

authors, service providers, and end users, by avoiding the emergence of

a multitude of proprietary, incompatible formats and players.”

The part of the standard that is most interesting in the context of this thesis is the ability

to attach textual meta-data to streams. Unfortunately, the format of the textual information

is not defined, which limits the long-term usefulness of this feature.

MPEG-4 also standardises several different tools for decoding both natural and synthetic

sounds. One of these tools being Structured Audio which allows for audio to be represented

such that it can be synthesised by an MPEG-4 compatible player. The data stream describes

a score and an orchestra. The score identifies the notes to be played, while the orchestra

describes the timbre of each note. Again, this is a gross simplification of the standard but

summarises the points of interest here. For a more detailed discussion of MPEG-4, the
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3SC29 stands for subcommittee 29, which forms part of the Joint ISO/IEC Technical
Committee on Information Technology. The Moving Picture Coding Experts Group (MPEG) is
officially working group 11 of SC29.

reader is directed to Scheirer [Scheirer99].

The issue of describing multimedia material is being addressed by MPEG-7, which is

currently under development. The aim is to make multimedia documents a searchable as

text by fully describing any multimedia content. It hopes to define a framework for

defining structures for meta-data, similar to the way in which the Standard Generalised

Mark-up Language (SGML) can be used to define HTML. In MPEG-7, an attribute of

some media (a single piece of data) is called a descriptor. A set of attributes is called a

description scheme. The standard will detail an XML-based Description Definition

Language (DDL) which may be used to define a description scheme. The DDL might also

allow definitions of descriptors, this is currently under discussion. Several descriptors and

description schemes will be included, something that will be required to ensure some

compatibility between MPEG-7 compliant systems.

Work began in October 1999 to define a framework for multimedia, MPEG-21. According

to the latest working paper, the aim of the initiative is:

“To reach a common understanding about a multimedia framework to

support the delivery of electronic content with the purpose of identifying

where new standards falling under the competence of SC293 are

required.”

The goal of MPEG-21 is to define a set of requirements for components of a “multimedia

delivery service” to interoperate. The first draft will look at the problem from the

perspective of the consumer. One of the twelve key issues that were raised during a

brainstorming session was “searching, filtering locating, retrieving and storing content”.

2.6 Content based retrieval of digital audio

Content based retrieval is important to content based navigation because the issues of

content representation, and techniques for indexing and performing approximate matching
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on that representation, have to be considered. Indeed, the difference between retrieval and

navigation is quite subtle: items containing the query are located in content based retrieval,

while items relating to the query are returned in navigation. As such, before examining

content based navigation, it is useful to investigate content based retrieval systems.

Retrieval has the additional use as a means of locating an initial media document, required

before the document space can be navigated.

2.6.1 Retrieval of digital audio samples

The term “digital audio sample” is used here to refer to short, descriptive, sounds such as

a bird chirping, a bell ringing or a car starting. Foote [Foote97] and Wold et al [Wold96]

described systems which could retrieve such samples. The general approach was to

calculate the Fourier transform of a sample then extract some salient features from it. These

features could then be approximately matched against a database of pre-processed samples.

The Fourier transform works well for this application as the samples are short (making

comprehensive indexing possible) and distinctive. The matches returned are likely to be

very specific, i.e. returning the sound of a specific car (e.g. a Ford Escort) starting rather

than the sound of any car starting. This is because the frequency spectra resulting from the

transform can be very detailed and precise. Approximate matching can be used to ignore

some differences but will match irrelevant samples if the matching is too approximate.

2.6.2 Retrieval of digital audio media

The distinctive nature of frequency spectra has been used by David Gibson to develop his

‘name that clip’ software [Gibson99]. It is used to index collections of digital audio, such

as CD-Audio. The Fourier transform of the audio is taken five times a second and added

to a database. Given a query, the same frequency analysis is performed and the database

searched for the nearest match. The problem of searching can be considered one of a 160-

dimensional nearest-neighbour search. The current implementation is in Java and is too

slow for interactive use (20 minutes). The accepted limitation of the software is that the

query must be a recording of the original audio. A recording from a radio transmission or

a microphone near a speaker is acceptable, but a hummed query or a piano rendition will

not suffice.
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4Attrasoft could be found on the Internet at http://attrasoft.com at the time of writing

2.6.3 Applying image matching techniques to audio

Some concepts of image matching have been applied to audio classification / retrieval. This

is useful for analysing digital input, such as from a CD, as there is currently no general

purpose (and reliable) method of converting multi-timbral, polyphonic, music into a

musical score. This prevents the melodic retrieval techniques discussed in following

sections from being applicable, although we would still like to be able to index and search

the music in a similar manner. Martin [Martin96] details the ongoing research into

polyphonic pitch tracking.

Image recognition allows a user to sketch a picture which is then analysed and compared

with images in a database. The images are indexed by identifying features in them, such

as lines and circles and their relationship with each other. If a picture could be created

which described a piece of music then features of that picture could be extracted and used

to index the music.

Creating an image of sound can be achieved by use of the Fast Fourier Transform. The

frequency vs. amplitude table can be plotted on a two-dimensional graph, time against

frequency, where the amplitude is represented by using a colour scale. An example of the

resulting picture is shown in Figure 2.3. By applying image matching techniques, this

representation can then be used for indexing. This is a useful technique as it can index any

form of digital audio although it tends to be used for classifying music. Pikrakis et al

[Pikrakis96] reported on one such classification project that tries to identify forms of Greek

traditional music. Fushikida et al [Fushikida98] used an FFT plot in conjunction with video

to improve content based video scene retrieval.

A similar technique has been adopted Attrasoft4, the authors of the shareware program

MidiFinder. The program is trained using one or more MIDI segments for which similar

segments are desired. A directory of MIDI files is scanned for files containing matching

segments. According to the user guide, the software is related to the ImageFinder program

that is produced by the same company. MIDI files can be considered to contain several

one-dimensional data arrays. They are converted to two-dimensional images by using “1
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Figure 2.3 - The output from a Fast Fourier Transform plotted on a two-
dimensional graph

to 16 pixels per quarter note”. A quarter note is the unit of time represented in a MIDI file

by a crochet. MidiFinder forms part of the SoundFinder family of products.

2.7 Melodic retrieval systems

The increase in interest in the field of music retrieval systems is reflected by an increase

in the amount of research and software concerning melodic retrieval. Older systems were

designed to be used by musicologists for analysing pieces of work, whilst more recent

work is more user-oriented and has a commercial edge. The commercial aspect is evident

with several systems having World Wide Web interfaces.

Query by humming is possibly the definitive application of content based retrieval of

music. In such a system acoustic input, typically sung or hummed by the user, is

transcribed and songs containing the input are retrieved from a collection of music. Results

are ranked according to how closely the songs match the input. Allowance must be made

for inaccurate singing or errors in the tune recall of the user.

A number of melodic retrieval systems are discussed here which show some of the

approaches taken by other researchers in the field and the resulting performance (when

given). The systems vary in their goals, so concentrate on different aspects of a retrieval

system. The research relating to the MusiFind system is referred to in later chapters, as it

has a thorough statistical analysis of melodic contours.

2.7.1 Catfind

Catfind is an Internet search engine for music, based at the University of Hong Kong and
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Threshold Pitch only Rhythm only Both

Static 47.3% 13.4% 90.2%

Dynamic 49.1% 35.1% 97.3%

Table 1 - The effect of using dynamic thresholds on recall

written by Yip Chi Lap [Yip99]. The first version could search by gross melodic contour

or a solfa description (e.g. do-re-me). Contours used the characters ‘/’, ‘-‘ and ‘\’, so the

Happy Birthday example above would be represented as ‘-/\/\\-/\/\’. The current

version does not support melodic contour entry but still allows this as a search mechanism

(i.e. only pitch direction is taken account of when performing the search).

2.7.2 Echo

Echo is a ‘search by humming’ system that was developed by Tomonari Sonada et al at

Waseda University, Tokyo [Sonoda98]. Pitch tracking is performed by a client program

which submits a query to a server on the Internet to retrieve songs matching the query.

The Echo system uses two techniques to improve the quality of results. The first is to

optimise the boundaries for pitch classes, dynamic thresholds. Sonoda argues that it is

beneficial to have a more flexible concept of ‘up’ and ‘down’. Instead of rigidly fixing ‘up’

to be any pitch that is a semitone or greater than the preceding one, the intervals of the

indexed collection are analysed to determine thresholds that discriminate the most. The

same is done for rhythm contours.

The second method of improving the quality of matching is to use progressively more pitch

classes until few (or just one) files match. This is referred to in the paper as coarse-to-fine

matching. A search is first performed with three pitch classes (a gross melodic contour).

If too many files match then a search with nine pitch classes is performed, and finally with

twenty-seven classes.

A user trial was performed with a total of 112 queries from 12 subjects on a database of
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200 songs. Table 1 shows an increase in recall when using dynamic thresholds for the gross

melodic contour and rhythm contour (source: Sonoda [Sonoda98]). The technique has the

most impact on rhythm contours. A decrease in accuracy was shown when using coarse-to-

fine matching and searching on either pitch or rhythm. An increase of less than one percent

was shown when matching using both pitch and rhythm. The coarse-to-fine matching

proved beneficial when errors were intentionally introduced into the queries. Increases in

accuracy were then made apparent, although the overall accuracy was almost 4% less than

with no errors.

Combining the two methods and searching using both pitch and rhythm resulted in 100%

of queries ranking the subject files in the top three suggestions.

The system was then expanded to contain 10,000 songs and methods of indexing large

music databases investigated [Sonoda2000]. They claim an average execution time of 0.78

seconds per query and an accuracy of 92%.

2.7.3 Humdrum

Humdrum is a set of tools used in the research of music, developed by David Huron at

Ohio State University [Huron97]. These tools operate on data conforming to the Humdrum

Syntax, best described as a generic representation framework. It allows many forms of

audio to be stored so as not to limit the scope of the tools, although the most well-known

format is “**kern”. The kern representation is designed to convey functional information

about a piece of music. It is not intended to describe a score for printing. The syntax also

specifies a number of reference records, which may define bibliographic information

pertaining to a piece.

The system has been used by musicologists to answer a wide variety of questions about

music. Two of the examples given in the user guide are: “In Urdu folk songs, how common

is the so-called "melodic arch" – where phrases tend to ascend and then descend in pitch?”

and “What are the most common fret-board patterns in guitar riffs by Jimi Hendrix?”. The

tool of interest to this thesis is ‘patt’ which will “locate and output user-defined patterns

in a Humdrum input”.



26

2.7.4 Lemström and Laine

Lemström and Laine ignored the pitch tracking to focus on the retrieval process

[Lemstrom98]. They presented a representation for musical data which they called the

inner representation. A two-dimensional relative code, derived from the inner

representation, was used for the matching as it was independent of the original key. An

efficient indexing structure, the suffix-trie, was used in the matching phase.

The music is indexed using relative pitch changes and duration between the starts of notes

(the inter-onset interval). The inner representation (IRP) file has some similar properties

to MIDI, having tracks and events. It consists of 17 tracks, the first containing the lyrics

while the rest contain instrumental events. Each event is a 12-tuple, giving information

such as: the start time and duration of the note, pitch, symbolic representation, interval

from the previous note and chord information.

The decision to define the number of tracks in the IRP file to be exactly 17 was due to a

confusion between tracks and channels in MIDI, which has 16 channels. A channel is a

very different concept to a track; the MIDI file format is explained in more detail in

Section 2.13. Storing both the exact pitches of the notes as well as the pitch intervals

should not be required as this information can easily be derived at run time with little

performance degradation (probably no more than reading the 12-tuple itself). It is stored

to simplify any programs using the representation as the intervals to not need to be

recalculated. The IRP was not referred to again in the rest of the paper, preferring instead

to use the two-dimensional relative encoding.

Two-dimensional relative encoding is a representation which consists of a pair of

components, relative pitch and duration, for each note. The method for matching the

melody was dependent on where the query came from. Melodic pitch contours were only

used when large errors were expected in the intervals. When a more reliable query was

given, quantized partially overlapping intervals (QPI) were used. QPI builds on the idea

of defining pitch directions as being small, medium and large. The category overlaps are

an attempt to make the retrieval process more tolerant of errors but appears to result simply

in an eleven-character alphabet.
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The indexing structure used was a suffix-trie, a structure developed for string pattern

matching. This is a tree like structure which stores each suffix of a word, e.g. “Hello”

would be stored as “Hello”, “ello”, “llo”, “lo” and “o”. It is very fast for exact matching

(O(m) where m is the length of the query) but the space requirement is not good; it grows

quadratically with the size of the database. To reduce the space requirement, only the top

part of the tree, up to a certain depth, was stored - effectively using n-grams. Lemström and

Laine did not specify the depth used.

Approximate matching was limited to errors in relative pitch, something which is not an

issue with gross melodic pitch contours. However, it is possible to implement an improved

matching algorithm which would allow for insertion and deletion of symbols. No timing

information was given, so it is difficult to determine the suitability of this approach for an

interactive system. However, due to the comprehensive indexing, one would imagine it to

be superior to the systems developed by Ghias et al and McNab et al.

The requirements for the lengths of the query keys for each representation were considered

using a database of 154 pieces of music that were “automatic compositions of Pauli Laine,

folk-songs, etc.” They showed that the QPI representation returns optimal results, where

optimal is the response given by exact intervals, with shorter keys than gross pitch contours

(7 characters instead of 10 characters).

2.7.5 Meldex

Rodger McNab et al developed a system which searched a database of folk songs from a

sung query [McNab96]. Transcription was performed by a system called MT (Melody

Transcription), which accounted for the user’s gradually changing tuning in an adaptive

mode [McNab95]. Searches were carried out using a choice of: an exact match of pitch;

pitch and rhythm; pitch contour or contour and rhythm. Approximate matches were

possible for pitch and rhythm or contour and rhythm.

A large database of 9,600 folk tunes was used to test the system and, using exact matching

of rhythm and pitch, identified tunes with very few mismatches. However, the system only

matched the beginning of tunes. The task of searching was further simplified due to the

folk songs being single track and monophonic (only one note playing at any given time).
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A complex system for transcribing acoustic input was employed. This results in an

unnecessary processing overhead when not matching using exact pitch intervals, as a

simpler algorithm is likely to track pitch accurately. The exact note sung is not important

when using the contour, yet time was taken processing it. However, no indication of the

speed of the system was given. They noted that a major issue would be the development

of approximate string matching algorithms which avoid a computational explosion as the

size of the database increases.

The system was given a web interface and named Meldex. It forms the basis of the music

library functionality at the University of Waikato’s New Zealand Digital Library. In

addition to the melodic search facility, which operates on the folk music collection, they

employ an Internet spider to locate MIDI files on the Internet and then index any text

contained within the file. This index can then be used to locate files by use of a text query.

While queries to the MIDI text search can not contain melodic content, a larger number of

files are indexed than in the folk music collection (over 100,000).

2.7.6 Melodiscov

Melodiscov stands for Melody Discovery and is a melodic search system that takes an

audio query [Rolland98]. It is being developed at LIP6, Paris, as a WYHIWYG system

(What You Hum Is What You Get). They claim that the audio query is transcribed with

over 90% accuracy even when singing lyrics: many of the transcription components of

similar work do not support singing of words. The search component uses several levels

of representation (called descriptions) of the music that are used to describe the properties

that are derived from the raw sequence of notes. There are three levels of description:

individual, local and global. Information at the individual level concerns a single note or

rest (e.g. specifying the duration and pitch). Local descriptions contain information on a

segment, or musical phrase (e.g. that the passage consists of notes that are ascending in

pitch). General information about the entire piece, such as the key or the average pitch, is

given at the global level.

Each description may be assigned a weight for similarity matching, so that differences in

important areas of the music effect the matching process more. These weights can be

specified by the user, so allowing different viewpoints on what makes one piece of music
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similar to another.

2.7.7 MusiFind

The MusiFind project used an indexed n-gram database for music retrieval [Downie99].

The use of n-grams is a common technique for breaking up long sequences with no natural

boundaries into manageable units. These units can then be used in algorithms and data

structures that are traditionally only suitable for dealing with words. A window of n

characters is slid along the length of a sequence to produce a list of n-grams.

The MusiFind project evaluated the effect of varying the size of the n-gram window (i.e.

the value of n) for 3, 4, 5, and 6 characters. The number of pitch classes required was also

investigated. Representations using 3, 7, 12, 14 and 23 pitch classes were considered. Only

a subset of these was actually tried as it was a requirement for the hash table to fit into the

memory of a personal computer contemporary at the time (i.e. one megabyte).

Stephen Downie’s work led on from the MusiFind project [Downie99], also using n-grams

and then performing a full informetric analysis of the representations. He claimed that a

representation with only three pitch classes (i.e. the gross melodic contour) is ineffective

for retrieval as there is not enough information to differentiate one song from another. This

is probably true for the values of n that were tried as they were relatively small. The claim

implies a requirement that the number of notes given in the query is relatively small,

compared to the length of the piece contained within the database.

Downie considers applying the concept of ‘stop words’ to musical n-grams. Stop words are

used in many text retrieval engines to remove words from queries and indexed documents

that have little resolving power (i.e. they are common to most documents). Downie

explains that stop words exist in the English language due to the highly skewed frequency

distribution of words. He claims that the distribution of n-grams is relatively equal and so

stop words should have little, if any, effect. This is not proven experimentally.

The research showed that very little accuracy was lost by not verifying that the entire query

is matched in files suggested by an index-only search. The built-in error tolerance of a

representation with fewer interval classes does not result in greatly improved recall or

accuracy. Instead, error tolerance is better served by a combination of a small n and a long
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query, where the n-gramming process provides adequate error correction.

2.7.8 MUSIR

In MUSIR, Salosaari and Jarvelin considered a retrieval model for music [Salosaari98].

MUSIR also used n-grams but with two, three and four units per n-gram. They considered

the use of pitch interval and duration to retrieve themes from one piece of music, a fugue

by J.S. Bach containing nine themes. Two queries were used in their experiment, one

consisting of ten notes and the second adding another six to the first (i.e. the second query

has sixteen notes).

This is a very small database, perhaps the smallest possible, but does highlight some

interesting issues. They found that, while n-grams of three and four returned fewer

matches, longer n-grams returned fewer relevant themes. This indicates, according to the

paper, that longer n-grams risk not matching relevant documents. Errors in the query are

accounted for by the n-gramming procedure, as is the case with MusiFind. Salosaari and

Jarvelin note that the choice of n-gram size has an effect on the ability of the system to

account for erroneous queries. A longer n-gram will require longer queries to match

successfully allowing for errors, as the error will be present in more n-grams. Shorter n-

grams will better support notes that are out of sequence, as the order is not noted when

retrieving and short sequences are more likely to be out of order than long ones.

2.7.9 Query by humming

Ghias et al also utilised gross melodic pitch contours, but with ‘S’ representing repetition

(or Same), for a database supporting audio queries [Ghias95]. The test database comprised

a collection of all the parts (melody and otherwise) from 183 songs. They noted that 90%

of these songs were retrieved with 10-12 pitch transitions. If the list of results was too

large, the user could perform a new query on a restricted search list consisting of those

songs just retrieved.

While the system allowed searching on any part of a song, and MIDI files are both

polyphonic and multi track, it did have some problems. Like Meldex, the pitch tracking

algorithm (using Matlab) was very complex and was the slowest part of the system.

Searching the database would slow considerably as more songs are added and the sample
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Figure 2.4 - An example graphical representation of (a)
notes on a stave and (b) the corresponding p-structure

database was too small to base any statistical analysis on. There was also a lot of unwanted

information in the database, as it contained a lot of information unrelated to the melody

(i.e. only drum / rhythm tracks were omitted).

2.7.10 Query by Pitch Dynamics

Query by Pitch Dynamics (QPD) was a system developed by the Link Group at

Carnegie-Mellon University [Beeferman97]. It was part of the by-content music indexing

project which aimed to explore automatic indexing and retrieval of all formats of music.

This included more than just a tool to retrieve a MIDI file that contained some musical

query. They also wanted to provide support for identifying songs that are similar to a query

song and to extend this to automatic clustering of similar songs.

They invented p-structures which collapse a musical score to remove pitches that are not

used. This retained as much information about the relationships of the notes that is possible

without storing the relative pitch. Each distinct pitch in a sequence is given a rank,

effectively removing unused pitches from interval measurements. Figure 2.4 shows an

example graphical representation of (a) notes on a stave and (b) the corresponding p-

structure. The example would be written as [2, 3, 1, 2].

The p-structure is deduced for a window that is slid across the song and then mapped into

a feature vector. Standard high-dimensionality storage and retrieval structures can be used,

R-trees in this case. These can locate nearest neighbours to a query, which allows a very

direct ranking strategy to be used. The expressiveness of p-structures is compared with that

of melodic contours in Section 3.6.2 of this thesis.

On average, queries took 2.9 seconds to locate the 10 nearest files in a database of 1022
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MIDI files. Attempts were made to deduce which track in the file was the melody by using

some simple heuristics. Firstly, tracks that use less that five distinct notes were assumed

to be uninteresting, and so not added. Secondly, the track name was searched for the word

“melody”. If a track contained that name, then the other tracks in the file were removed and

the matching track used in preference.

The web interface also supported searching by artist or title and by MIDI instrument

content. The last one is interesting as it allows queries such as “find all songs with more

than 30% of music being on acoustic piano”.

2.7.11 Themefinder

Themefinder is an interface into a collection of over 2000 monophonic classical themes

[Kornstadt98]. It is implemented as a web interface to the Humdrum toolkit described

above. A full complement of meta-data is also used, which includes the composer, genre,

key and meter. The monophonic representations may be searched by using one of several

music representations: exact pitch, pitch class, musical interval, semitone interval, scale

degree, gross contour or refined contour.

2.7.12 Tuneserver

Lutz Prechelt and Rainer Typke at the University of Karlsruhe have written a web-based

interface that uses a Java applet to pitch track a whistled query [Prechelt99]. The system

then utilises gross melodic pitch contours to search a database consisting of the pitch

contours given in the book by Denys Parsons [Parsons75]. It contains 10,370 classical

themes and more than 5000 popular music songs written between 1920 and 1975. It also

has a list of national anthems.

The system also facilitates bypassing the pitch tracking and entering the pitch contour

directly. There are advanced search options that allow a limited amount of filtering based

on the composer and title.

2.7.13 Vega

Vega was a multimedia database system that supports content based retrieval. It was

developed by Liu and Chen and is designed to index both video and music [Liu97],
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although the video indexing functionality is not considered here.

Three features were used to index melodic content. These were: melody, as represented in

do-re-mi form; rhythm, note durations (given as a number of beats) and chord sequence,

where the chord for each bar is noted. These features were stored in the database as strings.

The database was ultimately queried using their own Media SQL, although they also

developed a more user-friendly query tool.

The music search interface took several forms of query: MIDI keyboard; entering the notes

on a staff and by tracking the input from a microphone. Pitch tracking could use either a

zero-crossing algorithm or a discrete cosine transform (DCT) based one.

Queries could allow for transposition errors, drop-out and insertion errors in both pitch and

rhythm. The paper suggests that the matching process compares each melody with the

query melody, one at a time. The stored melody is converted into a directed graph to

perform the matching. No timing information is given but one would imagine it being quite

slow, given the use of directed graphs, for which comparison algorithms are complex, and

the lack of an indexed lookup.

2.8 Approximate string matching

The problem of searching a database of melodic pitch contours can be considered as a case

of simple text retrieval [Downie99]. The field of text retrieval, and the more relevant

approximate text retrieval, is well researched. The field is comprehensively explained by

Navarro [Navarro98]; only a brief overview and details of information relevant to this work

are presented here.

Developments in the area of text retrieval allowing errors were first used in applications

such as biology and comparing DNA sequences. Researchers wanted to know how similar

two sequences were, and what they had in common. DNA sequences can be represented

as very long strings consisting of a limited alphabet (i.e. A, C, G, T). Finding occurrences

of a shorter DNA sequence, allowing for some errors, is very similar to the retrieval of

pitch contours.

In approximate string matching, there are two common types of search: searching with k-
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mismatches, where only substitutions in the text are considered, and searching with k-

differences, where insertions and deletions are also catered for. Whatever the type of

search, the scenario will be one of two types and will have a large effect on choosing an

appropriate search algorithm: the search may be on-line or it may be indexed.

In the former case, all documents in the system are searched sequentially for matches. This

approach is required when space or time does not allow the documents to be pre-processed.

Agrep is a Unix tool developed by Wu and Manber which supports fast online search

[Wu92].

The second case pre-processes the documents, building an index, to improve subsequent

approximate searches on those documents. A document may be indexed at the word level,

where the exact location of each word is stored in the index, in blocks or as a whole

document. Word-level indices tend to require more space than document-level ones but

usually support more complex queries.

2.8.1 Query expansion

Exact search indices are well-developed structures in computer science. These allow fast

lookup into large databases, sometimes in constant time. These data structures can be used

in an approximate matching scenario by emulating errors in the query, so that exact lookup

may be performed several times to locate inexact search terms.

This is only effective for a small number of errors in the query and requires a reasonable

length query, or else there is a danger of matching the entire database. For example, a

query of “Hello” and allowing for three errors requires that only two of the letters need to

match, which is likely to be the case for many entries. In fact, the size of the expanded

query set, for an alphabetic query that is not case sensitive, will be greater than 26 3 (=

17,576). This example figure is actually for the query of “Hello” where the first two

characters must match.

2.9 Applying standard text retrieval techniques to music

It is common practice for text retrieval systems to make use of a stop list of the most

frequently occurring words in a set of documents. These words are ignored by the system
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when both indexing a document and processing queries. This works well for English

language documents as English adheres to Zipf’s law which states that the frequency of a

word multiplied by its rank is a constant. This results in some words having a lot less

resolving power than others, as they occur in most documents.

There may be clips of music which are more popular than others. Knowing clips that are

the musical equivalents of ‘small’ words in English, such as ‘a’, ‘the’ and ‘it’, could be

used to reduce the weight they carry when calculating a score for a match. It might be

worth removing them from the query completely if the clip does not discriminate much.

It should be noted that this is unlikely to have any grounding in the theory of music.

Chi Lap Yip found that, for certain lengths of n-gram, musical n-grams behave statistically

like English words [Yip99]. Downie performed a similar analysis but came to a different

conclusion, finding that the rank/probability of interval n-grams is skewed when compared

with English test. It is worth noting that the sizes of n-grams he considered were smaller

than those used by Yip.

2.10 Open hypermedia

Many approaches to hypermedia have been developed. Some of these, such as the

Amsterdam hypermedia model [Hardman94], specifically consider audio. One which is

relevant to content based navigation, and so considered here, is the open hypermedia

philosophy [Hall94], as used by Microcosm [Davis92] [Fountain90] and the DLS [Carr95]

[DeRoure96].

2.10.1 Key aspects of the model

There are two key aspects to the open hypermedia model. Firstly, information about links

between documents is stored separately from the documents themselves (in contrast to

common practice with HTML documents). This information is maintained in link databases

(linkbases) and, by selecting different linkbases, the user can obtain different views of the

documents. Access to linkbases may be abstracted into a link service, which is a network

service supporting the resolution of links.

Secondly, complex processing and reasoning about the links may be performed by the link
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service. Taking the generic link, as found in Microcosm, as an example. When the user

requests available links, the linkbases are queried with either the location in the document

or with the content at that location in the document. This means it is possible to link from

anywhere in a document. In this case, the processing involves searching the database of

links for suitable matches based on the content or position of the source anchor. For

example, a link may be authored such that any occurrence of the phrase “University of

Southampton” is associated with the main page on the world wide web for the University.

Using an open hypermedia system, it is possible to author a link from a phrase to another

document in one step. Users of a system may also be authors of links, even if they do not

have access to the documents on which those links are based. This is possible because the

links are held separately from the documents. Most existing systems only allow linking

from text documents, very few have support for audio and none allow linking from musical

constructs.

The approach supports link resolution that is more complex than matching simple phrases.

The context of the source phrase in the document could be used to deduce the appropriate

definition of bear and only return links relating to grizzly bears if the document is

discussing the animal, as opposed to the verb.

2.10.2 A standard communication language

The Open Hypermedia Systems Working Group (OHSWG) has developed the Open

Hypermedia Protocol (OHP) [Davis96]. This was aimed at providing a standard data model

and socket protocol for the communication of link information between open hypermedia

systems. The common features of existing open hypermedia systems were identified and

abstracted into a simple protocol. An existing system would need only to write a ‘shim’,

a software interface between OHP messages and the system, to be able to interoperate with

other hypermedia systems.

The first version of the protocol was presented by Davis et al and was based on the

message format used by the Microcosm system, a list of tag/value pairs. Due to the

considerable time being expended on the development of parsers for this format, the

protocol was modified to become XML compliant. This was to take advantage of the wide
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availability of XML tools and parsers for a variety of different platforms.

The original aim of the protocol was for interoperability between clients and servers. As

the scope was expanded to encompass the research interests of all members of the

OHSWG, it was realised that a single protocol could not be all things to all people. As a

result of this, the standard was split into several domains, representing the different

domains of hypermedia. The standard was renamed to OHP-Navigational (OHP-Nav) and

reduced in scope.

2.10.3 A common data model

Members of the group who are based in the University of Southampton have moved away

from defining a protocol for communication and towards developing an abstract data model

of hypermedia. It is hoped that, if hypermedia systems implement the same data model, the

protocol for communicating link information will become a secondary issue. This is the

goal of the Fundamental Open Hypermedia Model (FOHM) [Millard2000].

Formal models were developed of the different domains of hypermedia (navigational,

spatial and taxonomic). The concepts that are fundamental to all models form the basis of

FOHM. While an object in one domain may define more attributes than are common to all

domains, some attributes may be used in a separate domain.

2.11 Content based navigation

The Multimedia Architecture for Video, Image and Sound (MAVIS) project [Lewis96a]

[Lewis96b] was an open hypermedia system which allows links to be based on content

from pictures, sounds and video clips. Although primarily concerned with image content,

it did support audio as a proof of concept. The features used to represent audio were

frequency spectra (FFT’s). These could be approximately matched with an audio query to

find related files.

The application of FFT’s is of limited use, as matches using low level representations are

more prone to return irrelevant documents. This is because low level data is not suitable

for performing high level comparisons. For example, a short piece of music played on two

different instruments, perhaps an oboe and a flute, will have quite different frequency
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spectra yet might be expected to match on the tune being played. A straight match of the

spectra can only match the tune played on the same instrument, as long as it is played in

the same way. The abilities and shortcomings of using this representation for comparing

audio are best illustrated by David Gibson and his “Name That Clip” software (see above).

Fourier transforms are better suited for instances where the timbre, the relationships

between the harmonic frequencies, is important and enough to distinguish between the

different samples. The retrieval of digital audio samples, as discussed above, is a good

example of this.

Navigation is easily confused with retrieval, as illustrated by Hirata et al whose media-

based navigation system (Miyabi) allows users to use “the same type of media for a query

as the media they want to retrieve” [Hirata93]. This is not navigation but retrieval, as only

media similar to, or containing, the query may be retrieved. Navigation should also allow

media relating to the query to be found.

2.12 Identifying irrelevant data

The performance of most matching techniques could be improved by discarding content

which is not likely to be the subject of a search; so less material is indexed. It should be

noted that not all of these algorithms will naturally apply to navigation, due to its highly

selective use of anchors. That is, only relevant information is stored in manually generated

linkbases by default. In this situation, these techniques could be used in reverse to ignore

queries referring to content that would not have been indexed.

2.12.1 Melody extraction

The ability to identify the role of each instrumental line in a polyphonic piece of music is

very useful. The typical query on a music database is likely to be the main melody line, so

identifying this is of particular interest.

Uitdenbogerd and Zobel [Uitdenbogerd98] tried four algorithms for producing a

monophonic melody from a polyphonic MIDI file. The selection of algorithms was based

on music perception research which suggests that the sequence of notes with the highest

pitch is likely to be perceived as the melody, unless there is a very interesting, i.e. non-
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Name Method

all-mono Combine all the MIDI channels into one
and pick the highest note playing at any
given time

entropy-channel Use a simple measure to determine how
interesting each channel is and keep the
most interesting one

entropy-part Split the notes into parts, using heuristics,
and pick the most interesting one

top-channel Keep the MIDI channel with the highest
average pitch then take the highest notes,
as in all-mono

Table 2 - Melody extraction methods evaluated by Uitdenbogerd

repetitive, underlying sequence. The four algorithms they tried are given in the Table 2.

A small user trial suggested that the all-mono algorithm performed best, giving acceptable

results for many cases. Naturally, this approach will fail when the melody is not the highest

pitch being played.

The problem they have tried to solve is not strictly the same as that given as the motivation

in this section. Rather, given some polyphonic music, they convert it into a monophonic

representation such that it may be successfully indexed and retrieved. This is thought

necessary due to the majority of systems and indexed representations being monophonic.

Kjell Lemström and Jorma Tarhio remove this limitation by modifying an on-line search

algorithm to locate monophonic sequences in polyphonic music [Lemstrom2000]. That is,

a single note in a query will match that same note if it occurs in a chord.

2.12.2 Classification systems

Standard classification methods are applied in Chapter 4 to determine the melody line. A

number of approaches to classification are reviewed here. At a high level, all classification

algorithms work in a similar way.
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Classifiers require a set of pre-classified samples by which their performance can be

evaluated, and many require that same data to implement or train the classifier. A set of

features, referred to as a feature vector, is extracted from each sample. The choice of

features used will depend largely on the type of media being classified but might have to

be tailored for each classifier.

All learning classifiers must be trained before they can be used. The accuracy can then be

evaluated against the validation set. It is common for the set of samples used for validation

to be separate from the training set. This prevents classifiers that simply memorise the

training data from giving the false impression that they are 100% accurate; instead they are

realistically evaluated.

2.12.2.a Ad-hoc classifiers

Possibly the simplest approach to classification, at least in terms of concept, is ad-hoc. This

directly codes the knowledge of a person familiar with media into the classifier.

This can be effective for media types which follow clear and simple rules. Trying to

differentiate between pictures of sea and grass can be simply coded. Differentiating

between pictures of sea and sky is likely to be more difficult.

2.12.2.2 K-nearest neighbour

One method of classification is to find the pre-classified feature vector which best matches

the one to be classified. The classification of the query vector is assumed to be the same

as that of the nearest match. In a k-nearest neighbour classifier (K-NN), the full

representation of each feature vector in the training set is stored, along with the

classification for each vector. Given a vector to classify, the stored vectors are searched to

find the k that are closest. The classification of the closest vector is returned as the

classification of the query vector. Closeness is measured as the Euclidean distance between

the vectors. The nearest neighbour and k-nearest neighbour algorithms are both established

techniques for multimedia retrieval [Chen].

This approach has the advantage that more pre-classified samples can be easily added to

the set stored by the classifier. No information is lost, as all the data is kept, which makes

this approach highly effective. This has the consequence of having relatively high space
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Figure 2.5 - A simple neural network with
three input nodes (left), four hidden nodes
(centre) and two output nodes (right)

requirements and can be slow to classify.

2.12.2.3 Neural networks

Neural networks are normally faster than k-nearest neighbour classifiers, as evaluation

requires only a few operations on relatively small (compared to the training set size)

matrices. One can consider neural networks to be an approximation of the k-nearest

neighbour method. As such, they are not generally as accurate.

Neural networks are designed to model some aspects of the human brain. A network has

a number of input nodes which are cross-connected to a number of output nodes, often via

some hidden nodes (see Figure 2.5). These connections are weighted so that some nodes

are ‘more connected’ than others. This affects the flow of data from the input nodes to the

outputs. The network must be trained, to learn appropriate weights, before it can be used.

This involves presenting a set of inputs while also giving the desired output for that case.

The internal connections of the network are modified towards matching the example

output, so that it should learn valid outputs for any given input.

The mathematical theory and internal workings of neural networks need not be understood

to be able to use them. They can be thought of as a black box, although it is important to
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know that there are a number of parameters controlling the configuration and learning

abilities of the network. These must be tuned for optimal performance; there are tools

available to aid this tuning.

2.12.3 Analysing the structure of music

Although a musical performance is linear, there is an underlying structure to the music.

Analysing this structure could help identify key themes in the music, such as the ‘hooks’

(the easily memorable clips) in popular music or solos in classical music. Once the

structure has been deduced, this could itself be used as a form of linkbase, e.g. navigating

between all hooks in a piece.

Deutsch worked on isolating solo performances from digital audio [Deutsch98]. This used

the principle of psycho-acoustic masking, which identifies and removes sounds that are not

prominent in a signal. A common application of psycho-acoustic masking is in layer 3 of

the MPEG-1 standard, which uses it to compress audio. The standard compression ratio

(12:1) produces high quality audio, bearing a high resemblance to the original audio.

Deutsch increased this ratio, to start removing sounds that would be noticed (although not

much) by the listener; this is called overmasking. The ratio was increased to the extent that

only the prominent part of the audio signal remained. He found that, in the case of classical

music, this was usually the solo part. It is important to realise that this is very genre

specific though, as solos in classical music are usually the loudest in an audio mix. Other

genres, such a pop music, do not usually follow such rules.

Arbee Chen et al has investigated methods for the automatic discovery of repeating

patterns in music. It is accepted in musicology research that musical themes are usually

repeated throughout a piece of music. They developed an algorithm that used a correlative

matrix to locate musical sequences that were repeated exactly throughout a piece

[Chen98b]. Empirical tests were performed on a collection of classical works. The average

execution time was ten seconds for a piece with 1000 notes. A new data structure, called

an RP-Tree, was developed to reduce the execution time to under four seconds for a piece

with 1000 notes [Chen99]. The improved algorithm also removes trivial repetitions in an

attempt to find the segments that are most likely to be the theme of the music. Extraction

of repeating sequences has also been examined by Tseng et al in their music retrieval
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system [Tseng99].

The structure of music has a further use for content based navigation. One of the problems

with an interactive paradigm, such as Open Hypermedia, is automatically determining the

size of the selection in the media which is of interest.

An easily digestible example is of someone listening to a news broadcast. A suitable user

interface might consist of a single button on the listening device that the user presses when

they wish to find out more about a story. The structure of the broadcast needs to be

determined for effective linking. Where are the boundaries of the current news item? In a

similar way, the structure of music can be used to aid the navigation of the media by

passing the whole of the current musical phrase to the navigation system.

Melucci and Orio segmented musical works into melodic surfaces, short musical phrases,

and indexed these phrases [Melucci99]. The segmentation algorithm was based on the

Local Boundary Detection Model (LBDM) which was proposed by Cambouropoulos. The

model works on the assumption that a listener will perceive a change of phrase when they

hear some changes in the relationships between the notes. The transition between each note

in a piece of music is assigned a weight; higher weights suggest that a change in the

melodic surface is likely. The weights are then analysed to find the largest values in the

piece, which is where breaks are most likely to be located.

2.13 The MIDI file format

The Musical Instrument Digital Interface (MIDI) specification was originally designed as

a transfer protocol by which electronic instruments could communicate with each other.

It continues to be used in this way but has also been adapted as a file format. As this thesis

often refers to MIDI files, a detailed description of them, and the MIDI transfer protocol,

is given here.

The transfer protocol operates on a 31.25 Kbaud serial link. The link forms a daisy chain

through all connected equipment, so that only two MIDI ports are required on each

instrument to connect an entire studio. The MIDI protocol is optimised to take up as little

space as possible on the link, and so reach the receiving equipment in a timely manner.
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As all the instruments in a MIDI-enabled studio may be connected in a chain, MIDI has

the concept of logical channels. There are 16 logical channels which are used to address

individual instruments. For example, the drum machine may be set up to transmit and

receive information on channel 10, while a keyboard may use channel 1. There are

conventions that suggest the purpose for which some channels should be used; one such

convention is called General MIDI.

A MIDI message, called an event, contains commands such as: note off; note on; after

touch (modify the amplitude of a note currently playing); specify a different sound or

system messages (also called real-time messages). Note on events specify both the pitch

and the amplitude of the note to be played. The pitch is given as a number between 0 and

127, where 0 is defined as C0 and 127 as G10.

The MIDI file format uses the same basic principles as the transfer protocol. It is a

Resource Interchange File Format (RIFF) compatible file, where the file is organised into

chunks that may be parsed without knowing about MIDI (although very little is achieved

by such a process). The first chunk is a header which identifies the type of file, the timing

resolution of the file and how many tracks the file contains. A track can be thought of as

a single recording take, which might be played in parallel with other tracks. The track

concept is useful for musicians, as it allows parts to be managed individually. For example,

the piano part may be recorded separately from the bass, and re-recorded if the first take

was not good enough.

Each track is essentially stored as a binary dump of the MIDI events from the transfer

protocol, along with a time stamp for each event. The only exceptions to this are some real-

time (also called system) messages. One in particular is the MIDI reset message, which

directs all receivers in the system to return to their power-on status. Clearly this is not a

useful event to store in a file and is adapted to identify meta information. The meta event

is used to name each track, note copyright information and lyrics. It is also used to modify

the tempo and time signature of the file.

2.14 Summary

It can be seen that content based navigation of audio has not been the subject of much
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research, with only MAVIS supplying audio as a proof of concept rather than an aim. The

next most important research is the similarity matching of music used in content based

retrieval, as a CBN system will have to compare content at some point.

Both of the systems developed by McNab et al and Ghias et al have characteristics which

are not well suited to the intended application in content based navigation. The former only

indexes the first part of each piece, while all alignments need to be identified, and the

scalability of the latter needs to be improved upon to ensure response times which are

within bounds for an interactive content based navigation system.

Ghias et al suggested that three-way discrimination of pitch might be useful for finding

a particular song among a private music collection, but that higher resolutions would

probably be necessary for larger databases. Lemström used suffix-tries and effectively

resolves music to 11 pitch classes. The indexing engine used suffix-tries which gave a fast

response time but the size of the database would not scale well.

Content based retrieval and navigation have a lot in common. Both applications exhibit the

same basic requirements, namely fast approximate matching of some query content against

a large database of pre-processed content.

It is likely that the specific requirements may vary for each case. For example, the source

of queries for retrieval may come from a number of different sources with inherent errors

in the query (the nature of the errors may be dependent on the source). Navigation implies

selection from an existing piece of music, so the query is more likely (than in retrieval) to

be free from error, but the size of the query may well be different from the retrieval case.

The anchors in a music linkbase are likely to be smaller than the complete songs used in

retrieval but, assuming more than one link per song, may contain more targets. These

factors could affect the fine tuning of a database for a particular purpose.
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3 Retrieval of music

The similarity between content based retrieval and navigation (as explained in Section 2.6)

results in the majority of this thesis considering the simpler case of retrieval. The

application of retrieval techniques to navigation is considered in Chapter 5.

This chapter considers the selection of a representation and the design of a database

structure to support the approximate retrieval of music. The different approaches to

implementing the database are evaluated for speed, while the effectiveness of the database

design is measured. It introduces a new pitch representation that helps improve the

accuracy of the database.

3.1 The nature of a query

It is appropriate at this point to make some comments on the assumptions made about the

queries submitted to the system. One of the likely applications for a music retrieval system

is for a user to submit a query in order to locate a song. The query might be entered by a

music student using a MIDI enabled device or by placing notes on a score in a notation

system. Someone who is not a musician might sing or hum a piece of melody to the system.

Whichever of these methods is used, one can assume that the query will not consist of the

entire song (or else they are unlikely to require a retrieval system) and that the query may

contain errors. The query is also likely to be quite short, perhaps under ten notes from a

layman user. For example, the opening theme to Beethoven’s fifth symphony is recognised

by many people from only eight notes.

Taking a segment of a song not authored by the user as the query, e.g. a MIDI file or a

score from a music archive, has another set of properties. In this case, the query is not as

likely to contain errors, or at least not the same types of errors. This is due to the query not
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5 Trantor FTP site: ftp://cam031313.student.utwente.nl/pub/midi [10 February 1999]

being dependent on human recall and because different methods of conversion from the

physical to the digital domain are likely to be employed (e.g. Optical Music Recognition

(OMR) for printed scores). The length of a query is likely to be longer than in the first case,

due to not having to rely on how much the of the song the user can recall. The reasons for

using an existing work as the query are also likely to be different from the ‘query by

humming’ scenario. Instead of determining the name of the song that the user is singing,

questions such as “where is this theme also used” are to be expected.

The retrieval of music as considered in this chapter has two purposes. Both of the scenarios

are relevant. As previously discussed, retrieval can be used to locate the first documents

in a browsing session. Retrieval can also be an aid when creating links for navigation. The

second scenario is also of great interest, as it most closely matches the specifications of

queries in a system used for navigation.

3.2 Compiling the music collection

Before considering the development of a system for retrieving music, it is a good idea to

first obtain some music. The music will be required for both investigating requirements and

for testing the resulting retrieval system. Only MIDI files are considered, as large numbers

of these exist and they avoid the pitch tracking problems associated with other formats,

such as MP3 files. This also clarifies the subject of any later evaluation, i.e. evaluating the

ability of a system to retrieve digital audio files would be testing the pitch tracking function

as well as the retrieval process under test.

The requirements for MIDI files in the collection were that they should be representative

of those likely to be indexed by a ‘real’ retrieval database. This should ensure that they will

also represent realistic source material for a content based navigation system. This means

multi-track, polyphonic music. Multiple arrangements of the same songs are allowed, as

they can be used to test the generality of the search procedure. Exact duplicates should be

removed.

The test music collection was obtained from an FTP site on the Internet5. At the time the
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files were copied, the site contained over ten thousand files. Filenames which only differed

in capitalisation were not downloaded. The checksum of each file was compared and exact

duplicates removed, although this did not remove multiple versions of a song. This further

reduced the number of files by 500. Removing files which the database system could not

use, either because they were single track MIDI files or because they were corrupt, left just

over 7500 files for the experiments.

The collection contained over 30 million notes, averaging 120 notes per minute of each

MIDI track and eight tracks per file. The average length of a piece of music in the database

was three and a half minutes. This is considerably different to the folk music database used

by both McNab et al and Downie, where the melodies were an average of 56.8 notes

[McNab2000].

3.3 Choosing a representation

The representation chosen for this work was the gross melodic pitch contour, as it has some

interesting properties and poses some intriguing questions. It is likely to be forgiving when

used with human queries, as people are unlikely to recall melodies with 100% accuracy.

Pitch contours are relatively vague; does this result in too many false matches? Or,

conversely, does this built-in “fuzziness” result in allowing a straightforward exact match

algorithm to have some limited approximate matching behaviour? An added advantage, at

least for future work, is that the difficult problem of pitch tracking might be simplified if

only up, down and repeat need to be transcribed.

3.4 Database types

It is obvious that fast retrieval will require more than a collection of text files and a

standard linear text search utility such as the grep utility, especially as more files are added

to the database. Is a specialised database required for optimum performance, or are there

viable / suitable alternatives? Three possible database types are considered here. They were

chosen as being representative of the selection that a software engineer is likely to choose

between. One is specialised to the problem, another is a standard relational database while

the last is a text indexing engine - given the previous observations that regard the process

of matching pitch contours as being a case of text retrieval.



49

The pitch contour for a track is long, an average of 310 pitch directions per minute in the

test material. To allow an efficient database lookup technique to be employed, each track

is stored as a set of overlapping sub-contours; sub-contours are the atomic units of the

database structure. The length of a sub-contour is referred to as the atomic length, L. To

give an idea of a typical value, L = 12 for the database initially used to test the system. This

is an important constant in the database structure as it defines the number of distinct atomic

units that may be held in the database (which is referred to as the atomic resolution in this

thesis).

atomic resolution = 3 L

This principle is applied regardless of the actual database implementation. It is a widely

used technique; the sub-contours are often referred to as n-grams in related literature.

Lemstrom notes that the ideal implementation would store all possible post-fixes of

contour but that this results in huge storage requirements. It is also unlikely that user

queries would take advantage of such rich indexing. That is, user queries are unlikely to

be of an entire song, or a large majority of it.

To add a contour to an n-gram database, it must be split into sub-contours by sliding a

window of L characters along its length. An example is shown below where L = 12.

The contour: DURDRUURDRUDUR

Becomes: DURDRUURDRUD

URDRUURDRUDU

RDRUURDRUDUR

3.4.1 Custom database

The aim of the custom database design was to facilitate the fast lookup of a node when a

contour n-gram is the key. Using a perfect hashing function, i.e. one that maps different

keys to different addresses, to index into a lookup table allows just this. As the hashing

function is perfect, there is no need to compare the nodes found at that index, in fact, there

is no need to store the key at all. The use of perfect hashing results in a larger space

requirement but, with availability of cheap, high capacity, storage devices increasing, the
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Figure 3.1 - A diagram showing the operation of the database

speed benefit was considered to out-weigh this drawback.

The custom database is best described by explaining its operation. Occurrences of a sub-

contour in the custom database are located by converting the query contour into a base 3

number (where U=0, D=1 and R=2). This gives the relevant index in a lookup table stored

at the beginning of the database file. Each element of the table points to byte locations

further in the file, identifying the start of the linked list of matches (see Figure 3.1). If the

element contains the value zero then there were no matches for that sub-contour.

Each node in the linked list contains: the byte offset in the file to the next node; the id of

the file the node relates to; and the number of times this contour occurs in the file. The file

id is a unique number for which the corresponding file name can be found by using an

associated name database. There is only one node stored per sub-contour per MIDI file

which often produces a compression effect as this usually refers to more than one ‘hit’. It

should be noted that the sub-contour is not actually stored in the database, but rather

implied by the position of the related data in the lookup table at the start of the file.

This database structure makes it possible to determine if there are any matches for a given

query in constant time. Each subsequent access retrieves one match. However, this is a

lookup technique and only works with exact matches. The lookup table can be considered

as a hash table which uses an optimum hash function. This function maps each distinct, L

length, pitch contour to a unique location in the lookup table. This allows for constant time

lookup, as one disk access ensures relevant data is located, but has the disadvantage of

limiting the number of distinct contours indexed. How limiting depends on the particular

architecture used. On an Intel Pentium III system, this is a practical maximum of 16.

The limit is due to the amount of space required by the lookup table. For example, a file

pointer is 32 bits wide on the development system, which allows files up to 4 Gbyte in size.
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Figure 3.2 - A graph showing the effect of atomic length
on the maximum number of nodes that may be stored in a
database file

This means that each lookup table entry requires four bytes of disk space. So an atomic

length of 3 would give a total of 27 distinct contours, that is 108 bytes for the lookup table.

The table reduces the amount of addressable space left for the actual node entries (4 Gbyte

less 108 bytes). This effect is not noticeable for small values of L but quickly becomes an

issue as the index table grows exponentially with increasing atomic lengths. Figure 3.2

shows the maximum number of nodes that may be stored in a 4 gigabyte file - when a node

occupies 12 bytes. It can be seen that the size of the lookup table has a negligible impact

on the rest of the database where L <= 15. Over 1.44 gigabytes of disk space are required

for the table where L = 18, which is the theoretical maximum for 32-bit file pointers.

Figure 3.2 shows this more clearly, where it is shown that there is not enough space for the

lookup table when L = 19 (the maximum number of nodes is negative).

Keeping the lookup table as a separate file would not overcome this restriction entirely, as

there would still be an upper limit of 18 pitch directions, although over 100 million

additional nodes could be stored. Another disadvantage of using one-to-one hash tables is

that space is quickly wasted when a higher value of L is used. This is due to the uneven
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6Onix is available from Lextek International, see http://www.lextek.com for more
information. It was generously donated by Art Pollard, the author of Onix, for these experiments.

distribution of pitch contour n-grams in music, so some may not occur at all in a collection.

3.4.2 General purpose database

A standard (table based) database is used as the back end. The native support for Paradox

tables in the Borland Database Engine was the particular one used, although most

databases should produce similar results (e.g. Microsoft Access). The method of indexing

used by a particular database will be implementation dependent. It is likely to use a fast,

general purpose, index. Hash tables using hash functions which do not map distinct

indexed keys to unique values is one such structure. This approach has the advantage of

allowing greater length n-grams to be used as a direct result of this generality. The

indexing algorithm might be tuned for natural language text, where more than three

characters of the alphabet are used. This may lead to a decrease in performance when used

to index pitch contours.

3.4.3 Exact text retrieval engine

As this work represents pitch contours as simple ASCII text, an off-the-shelf text indexing

database was used for comparison purposes. This was the Onix library6 from Lextek

International. The downside of using this particular library was that the index must be built

in one pass for it to work efficiently. There is a limit on the number of updates possible to

the index, before having to start again, of 256. This is not likely to be the case with all text

indexing and retrieval libraries. On the positive side, the atomic length is not limited to 18,

like the custom file format is, and it claims to be able to retrieve from the index with a

single disk access (on average).

Text retrieval engines have similar properties to table based databases. They are effectively

hard-wired tables that model the relationship (word÷ locations). This specialisation may

result in a slight speed increase over standard database systems.
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3.5 Query expansion

The design of a near instantaneous system which needs only to locate content that exactly

matches the query is relatively straightforward. All of the database systems considered here

are designed for exact matching. Whilst relational database systems may provide limited

approximate matching through the SQL ‘LIKE’ command, this is geared towards wildcard

matching and not for k-mismatches.

Performing an approximate match using the database structure alone would require the

entire database to be searched. Obviously this does not scale to large databases. The notion

of approximate queries, as opposed to approximate matches, is used to solve this. Possible

errors in the query are emulated, the database searched for the resultant list of near matches

and the results collated.

This technique is related to the process of query expansion as is commonly used in

database systems to improve recall. In this case, it is common to add terms to the original

query with a view to locating related documents. A thesaurus may be used to add the

search term ‘audio’ to a query containing the term ‘sound’. Documents found to contain

these additional terms will not usually have the same weighting as those containing the

original terms.

To match a query, the set of contours that are within a user-defined distance, d, of the

query is produced. The distance between two contours is given by a string metric that

quantifies the minimum cost of transforming one contour into another. Cost weights may

be assigned to the individual editing operations involved in such transformations, namely

symbol substitution, insertion, and deletion.

The metric used may depend on the source of the query, which could be extracted from a

MIDI file or from a digital audio file with monophonic or polyphonic content. It may come

from original source material or via the tune recall skills of the user. This system employs

the Levenshtein distance [Levenshtein65], where each transformation has a cost weighting

of 1, but in each case certain types of error may be more common so this weighting may

not be the most appropriate. For a query by humming system, more research into tune

recall is needed to identify suitable weights. It may be possible to establish appropriate
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Figure 3.3 - The complete query expansion tree, where L = 2

weights automatically for the metric by learning from a reference set of data [Ristad69].

Two methods of query expansion are considered here. The first, described in the following

section, is an algorithm for achieving the query expansion as explained above. The second,

given in Section 3.5.4.2, uses an alternative approach to cater for possible errors in a long

query. Choosing the most suitable expansion method requires calculating the number of

additional search terms that are introduced.

3.5.1 Tree fuzzy query expansion

A brute force approach to collating the expanded query set is to iterate sequentially through

all possible contours of length L. The Levenshtein distance between the query and each

possible contour is evaluated. Contours that are found to be within the distance limit are

added to the expanded query set. Additional and missing pitch directions are catered for

by the string distance metric which considers these errors to have a weight of one. In this

way, a distance limit of one will allow pitch direction to be inserted, omitted or replaced.

It is possible to implement a ‘brute force’ algorithm which uses a tree structure to ‘visit’

each contour. Consider a tertiary tree which has a depth equal to the atomic length, L. Each

node contains a contour. The contour at the root node is empty. The tree branches three

ways at each node, appending a pitch direction to the contour at each level. The set of leaf

nodes is the set of all possible contours (see Figure 3.3).

A simple tree search would traverse the entire tree, comparing the contour at each leaf node

with the query. This algorithm can be refined by comparing the contour at each node with

a prefix of the query contour. If the distance limit is exceeded then there is no point in

traversing the rest of that tree, as the error can only increase. This allows large sub-trees
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Figure 3.4 - A graph showing the average
execution speed of the tree-based query
expansion, where L = 12

to be removed, reducing the number of leaf nodes that need to be compared.

There is a further improvement which can be made. Currently each node contour is

compared. There are two situations where the distance between a node and the query is

irrelevant:

1. If the length of the contour at a tree node is less than the number of errors allowed,

then it must be within tolerance;

2. If the height of a sub-tree is less than the remaining number of errors allowed then

all leaf nodes of the sub-tree will be within tolerance and no node comparisons

need be made.

3.5.1.1 Evaluation of tree fuzzy matching

The speed of the query expansion was evaluated by expanding as many randomly

generated queries as possible in one hour. The results for an atomic length of 12 are given

in Figure 3.4. This compares favourably with the brute force approach of trying each

possible contour in turn, which took 74 seconds on the same machine. It is interesting to

note that even when all contours start to match (when d >= 10) the execution time is faster

than using brute force, as very little comparison is performed.
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3.5.1.2 Calculating the size of the expanded query

The number of contours with d-mismatches can not be calculated accurately in advance,

due to it being highly dependent on the query. A general formula for the worst case can be

determined.

First consider the case with no errors, i.e. there can only be one contour. The set allowing

for one error contains contours where each pitch direction in the query has been replaced

with the other possible characters (i.e. two, for a three-character alphabet). It also contains

the exactly matching contour, so n = 1 + 2L (when L is also the size of the query).

The case for d = 3 can be considered an extension of d = 2. Each emulated error in the

previously mentioned contours will in turn will be fixed while an additional error is

applied. This leaves one less position to try (L-1), so the result of d = 2 is multiplied by 2

for (L-1).

This leads to the general form: , where( ) ( )( ) ( )( ) ( )( )( )n L L L L d= + − − − −1 2 2 1 2 2 2 1K ( )

d < L. This can be better expressed as the following equation.

To check the validity of this model, the number of distinct n-grams in the expanded sets

was noted at the same time as testing the execution speed of the tree-fuzzy expansion. The

actual minimum, maximum and average set sizes were plotted, along with the estimate

given by the first equation (Figure 3.5). This showed the equation to be a relatively poor

model of the actual sets. This is because following the process described above will

duplicate contours during the expansion. A better approach is to use the pick, or

permutations, function which is defined as:
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Figure 3.5 - A graph showing the relationship between the
calculated expansion set sizes and actual set sizes

This has some visible similarities to the original equation. The permutations function can

be used to determine the number of substitutions that are introduced for each increment in

the number of errors emulated. The following model (referred to as equation 2) was

implemented and plotted alongside the original equation (Figure 3.5). This also did not

produce perfect estimates but more closely matched the observed sizes. Due to the complex

interaction of substitutions, insertions and deletions, it is likely that applying a curve fitting

algorithm to the observed data will be the only way to successfully model the problem.

Equation 2 should be adequate for the purposes of this thesis, as the intended application

of this metric only requires an approximation (see Section 3.5.4).

3.5.2 Collating the results

Tune retrieval can be compared with text retrieval; for example, the number of occurrences
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of a contour in a MIDI file is significant. However, it is perhaps more unusual in text

retrieval system for the query to be so prone to error; as noted above, contour matching is

sometimes more akin to spell-checking; a more intelligent form of query expansion, e.g.

returning the ten most likely pitch contours, could be considered a spelling checker for

contours. This means that the policy for ranking results must be different, giving priority

to a large number of hits with one error over a single precise hit.

A score is calculated for each file by summing the number of times a contour in the

expanded query set occurs in the file. Each hit is inversely weighted by the distance

between the original query and the contour matched. The inverse weighting ensures that

less importance is given to contours matched which are increasingly different to the

original query. The search results are then sorted in order of their score, highest first.

The system favours matching on large MIDI files, as they contain more contours, so the

scores are higher. To overcome this, the contour count could be normalised upon adding

a file to the database. All counts would be expressed as a value indicating the percentage

of the file that each sub-contour represented. For example, a sub-contour which occurs 100

times in a file containing 1000 (indistinct) sub-contours in total would have a contour count

indicating the fact that it represents 10% of that file. This is a topic for future work.

3.5.3 Handling short queries

Tree-fuzzy query expansion is fine for queries of the same length as the atomic length of

the database. Queries less than the atomic length are easily catered for by trying all

possible endings for all of the expanded smaller query. If the query is much smaller than

the atomic length then this approach can incur a considerable overhead, as the expanded

set can become quite large. The database should be rebuilt with a smaller atomic length if

queries are consistently too small. Alternatively, multiple databases could be built if the

lengths of queries are inconsistent, querying the database whose atomic length is closest

to the query length.

An obscure side-effect of sliding a window along the length of a contour to add it to the

database is that the last L - 1 characters can not easily be located in the database. For

example, take a contour of 13 pitch directions (a) and let L = 12. The two sub-contours
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resulting from sliding the window will be (b) and (c).

(a) UDRUDRUDRUDRUDRU

(b) UDRUDRUDRUDRUDR

(c) DRUDRUDRUDRUDRU

Performing a search for the last 12 pitch directions of (a) will match (c). Searching for a

shorter version of (c) is currently handled by padding the query with all endings possible

to make the query L pitch directions long.

The technique of padding the query will fail if the query is, for example, the last five pitch

directions of (a): RUDRU, which is referred to here as (d). This is because there are no n-

grams which start with (d), the window was only slid up to the end of the contour when

added. To be sure of locating (d), one must pad both the beginning and the end of the

query. That is, first with no padding at the beginning, then with one pitch direction of

padding and six at the end, and so on. This results in a lot of padding, about (3L - q)( L - q)

extra pitch contours, where q is the length of the query.

This situation only arises when trying locate a contour within the last n-gram of a contour

track. Given the small number of track endings in a database, compared with the amount

of remaining n-grams, it does not make sense to pad short queries in this way. Doing this

would reduce the overall accuracy of the database for a minimal increase in recall.

An alternative solution to the problem is to continue sliding the window past the end of the

contour being added, padding to length L before adding. This process is considered de

rigeur in many similar systems but they do not have the requirement that all contours in

the database must be L pitch directions long, so they have no need of padding. If this

alternative solution is taken too far, i.e. adding to the last pitch direction, 1/3 of all possible

pitch contours will be associated with each track. This clearly renders the database next to

useless.

Choosing an atomic length that is similar to the common query size is the best way of

dealing with this issue. In some cases, the self-similarity of some contours may help. For

example, the last six pitch directions of (a) will match (b) when padded in the normal way.
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There is also a high chance that the contour sequence is repeated elsewhere in the target

contour track. Given the small number of queries that are affected by this problem, neither

of the above solutions has been pursued further.

3.5.4 Handling long queries

Queries longer than the atomic length are more troublesome than ones which are shorter.

Two approaches are examined here: the first slides a window over the query; the second

uses a principle from approximate matching algorithms and splits the query. Both methods

produce a set of contours that may be used for a subsequent index search.

3.5.4.1 Using a sliding window

The approach first considered was to use the same sliding window technique as used when

adding contours to the database (see Section 3.4). Each sub-contour is then expanded in

line with the distance limit. The set of expanded sub-queries is collated in to one set. The

lowest distance is used where a sub-contour occurs in more than one set.

The worst case expansion for each sub-contour is defined above, so the worst case overall

will be dependent on the number of contours, which is given by q - (L - 1), where q is the

length of the query. So, n = expansion_per_ngram (q - (L - 1)).

3.5.4.2 Splitting the query

While the sliding window method is suitable for queries which are not much greater than

the atomic length, it is wholly inappropriate for very long queries, such as an entire MIDI

file. A more intelligent way of splitting the query is to use a principle identified by Wu and

Manber and discussed by Navarro [Navarro98]. The idea is based on the fact that for a

search allowing one error in the query, the error must be either in the first half of the query

or the second. An exact search can be performed for both halves of the query and the

results combined. As at least one half of the query is correct, the search results are

guaranteed to contain a match. This is generalised for any given number of errors, d, by

splitting the query into d+1 pieces. This is the second method of query expansion that

allows for errors in the query.

The use of n-grams has implications for this method. If the split produces queries that are
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Figure 3.6 - Splitting a long query in an n-
gram database

smaller than the atomic length then they must be padded out by trying all permutations of

pitch directions that may end each piece. For example, given a query that is 20 pitch

directions long, and assuming one error, the query will be split into two pieces, each of 10

pitch directions. If the atomic length is 11 then each half becomes three queries, the

original with U, D and R appended (as shown in Figure 3.6) resulting in six queries in total.

This example still shows an improvement on the previous approach, which would produce

ten sub-contours from sliding the window before each sub-contour is expanded to allow

for any errors. There is a point beyond which splitting the query will not be cost effective.

If the example above used a query of only 12 pitch directions, there would be two split

queries of 6 pitch directions. Completing all possible endings would result in 486 contours

(3(11 - 6) padding per part and two parts).

As well as not allowing these split queries to be smaller than the atomic length, the use of

n-grams requires that they must not be larger than the atomic length. Given a query of 100

pitch directions, and assuming one error, the ideal split would be into two queries which

are both 50 pitch directions long. Unfortunately, this can not then be used to search the

database. The best approximation to the splitting method is to segment the original query

into atomic length sized chunks, ensuring that there are at least d+1 pieces. A simplistic

implementation would move along the query making such chunks and fill in the endings

for any remaining query. This is very expensive if the remainder is small, leaving a lot to
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let min_ngrams = ceiling (query_length / atomic_length)
let min_pieces = distance_limit + 1
let num_pieces = max (min_ngrams, min_pieces)
let avg_size = query_length / num_pieces
let remainder = query_length mod num_pieces

while (query_length > 0)
begin

if (remainder > 0)
let piece = first (avg_size + 1) characters of query
remainder = remainder - 1

else
let piece = first avg_size pitch directions of query

endif

if (piece is the last piece)
pad the beginning of piece to be atomic_length characters

else
pad the end of piece to be atomic_length characters

endif

add the padded contours to the expanded set
remove piece from the beginning of query

end

Algorithm 1 - Pseudo code for the query splitting algorithm

pad. The number of extra contours produced by padding is 3p, where p is the number of

pitch directions to pad. It is better to take slightly undersized chunks from the query and

fill in the endings. Distributing the padding in this way results in as little as 3p being added

to the expanded query. A smaller set is preferred as this more accurately represents the

query, so the search results will also be improved. The time taken to perform the index

lookup will also be reduced, as there are fewer sub-contours to search for. The pseudo code

for the splitting function is shown in Algorithm 1.

Note that the last piece has the beginning padded, as opposed to the end as described

previously. This is required as a consequence of the way contours are added to the database

which means that the last L - 1 pitch directions of a contour can not be located (see Section

3.5.3). Recall that this is because short queries are padded for all possible endings and there

is nothing for this padding to match on.

Consider what happens when short pieces have their endings padded and the query consists
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Figure 3.7 - A diagram illustrating the effect padding a
split query (b) when searching for the last part of a contour
in the database (a).

of the end of a contour in the database (or a complete contour from the database). If the last

piece of the split query has fewer than L pitch directions, it is not guaranteed to have

anything to match against. This is illustrated in Figure 3.7, which shows a query of 31 pitch

directions against the last part of a contour in the database, where the atomic length is 14

and one error is allowed in the query. The last piece of the split query (b) is 10 pitch

directions, padding will try and match past the end of (a). The solution proves to be a

simple one, add padding at the beginning of the last part. There must be this special case

handling, always padding in this way will mean that the beginning of contours will no

longer match.

There are many scenarios where the queries are not likely to benefit from this alternative

processing. For example, retrieval systems that process user queries are unlikely to have

many instances of people searching for the last notes of a piece of music. Conversely, there

are scenarios where this may be more important. One example is where a complete contour

added to the database is the subject of the search (which is conceivable in the case of

navigation).

One could argue that one sub-contour from a long query not being located in the index is

not likely to be detrimental to the search as a whole. There are cases where the last piece

is a substantial part of the query, such as the query shown in Figure 3.7. This amounts to

one third of the query (81 sub-contours when it is padded) which might not match against
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let min_ngrams = ceiling (query_length / atomic_length)
let min_pieces = distance_limit + 1
let num_pieces = max (min_ngrams, min_pieces)
let avg_size = query_length / num_pieces
let remainder = query_length mod num_pieces

let n_per_peice_with_r = 3 (atomic_length - (avg_size + 1))

let n_per_peice_without_r = 3 (atomic_length - avg_size)

let n = (remainder * n_per_peice_with_r) +
( (num_pieces - remainder) * n_per_peice_with_r )

Algorithm 2 - Pseudo code for the estimating the number of sub-contours when
splitting the query

the desired contour in the database and could be found in ‘undesirable’ contours. It is this

last point, that inappropriate files might match better purely because of the padding method

used, which means that the padding issue must be addressed. Omitting the last piece from

the search is to be preferred above padding from the end. Perhaps a more persuasive

argument for handling this case is that the processing overhead is minimal and will

improve the quality of the results of a search.

3.5.4.3 Estimating the size of the expanded query set

Splitting a query is not as processor intensive as the tree-fuzzy query expansion. As such,

the need to estimate the size of the expanded query set is reduced. It might well be easier

simply to perform the expansion than to develop an algorithm to determine the size of the

resulting set. The estimating algorithm (Algorithm 2) duplicates the initialisation of

variables similar to those used in Algorithm 1 but replaces the piece handling with three

simple calculations. The result, n, will be close to the actual number of sub-contours

produced by the splitting algorithm in most cases, but it is still an estimate as it assumes

that all sub-contours will be unique.
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3.5.4.4 Concepts of error tolerance

The combination of handling of long queries and query expansion results in two concepts

of error tolerance. The first is that introduced by tree-fuzzy query expansion. This operates

on each atomic length window on a query that is processed by using a sliding window. This

can be thought of as a local error tolerance, or the local distance limit. For example, on a

query of 13 pitch directions, and assuming an atomic length of 12, a local distance limit

of 1 will allow for 2 errors in total.

The second concept is the number of errors to allow in total, the global distance limit. The

query splitting algorithm uses this limit for deciding on the minimum number of pieces a

query must be split into.

3.5.4.5 Selecting the best expansion method

For the fastest index search, the number of sub-contours in the expanded query set should

be kept to a minimum. The most appropriate expansion method can be determined by

calculating the size of the sets each method would produce. Ideally, the calculations would

return precise figures but this is not crucial. Anecdotal evidence has indicated that a rough

approximation is good enough to select an appropriate method. Anecdotal evidence also

indicated that, while this strategy results in the fastest search, using a slightly larger

expanded query set could help improve the accuracy of the search.

3.5.5 Multistage queries

The use of n-grams has the side effect that a longer query, whilst returning a more relevant

top choice, will usually return more matches no matter how the query is expanded. This

is similar to the behaviour exhibited by some Internet search engines, such as “AltaVista”.

The more information a search engine is given, the more relevant the top suggestion is

likely to be, although many millions of documents may partially match. This is due to the

fact that no checking is done to ensure that the whole query is actually contained in the

matched files, or indeed that they occur next to each other (that they are temporally

aligned).

It is reasonable for a user to expect that a longer query would result in fewer matches being
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found. This is not the case because, as described above, a larger expanded query set will

find more matches in the index. The user’s expectations can be met to a limited extent by

sanity checking the results of the search. Firstly, there will be a minimum number of sub-

contours in the query that must present in any result for it to have chance of being a match.

For example, a long query of length 31 might be split into three pieces. This means that

each result must indicate that at least three contours match to be valid. The calculation of

the minimum number of hits is dependent on the method of expansion. If the sliding

window method was employed: min_hits = (query_size - atomic_length) + 1. Splitting the

query require the use of: min_hits = ceiling(query_size / atomic_length). This works,

regardless of the error tolerances used, although it not likely to filter out many results when

higher tolerances are used, as more sub-contours are present in the expanded query set and

so the hits per result will be higher.

The second method of sanity checking, which can be used in conjunction with the first,

requires that the index be searched with a local distance limit of zero. It is based on the

principle that, for an exact match, all sub-contours in the expanded query set must be

present in any valid result. This means performing an AND search for the query set. This

technique can be enhanced to cater for a global error tolerance by ensuring that no more

than global_limit sub-contours are missing from each result.

An unfortunate side effect of expanding long queries is that, while the index can determine

that a file contains at least some of the query, it alone can not confirm a match for the

whole query. There is nothing to guarantee that the parts of the query that matches are

temporally aligned. As such, the use of n-grams requires long queries to be validated, in

theory at least. Downie [Downie99] claims that performing this validation did not

noticeably improve the accuracy of his results.

3.6 Matching using secondary contours

Pitch contours are designed as an abstraction of the exact pitch to allow for errors in the

input. This is useful for both hummed queries and queries produced by using feature

extraction engines. As well as allowing low quality queries to locate music requested by

the user, the pitch contour can also produce a large number of false matches. The pitch

contour for two pieces of music can be identical, even though they might be very different
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Figure 3.8 - Two different bars with the same
primary contour

to listen to. The example score in figure 3.8 shows this, where the two bars have the same

pitch contour of ‘UDU’.

While pitch errors are likely to accumulate over time with many query sources, e.g.

humming, more information can be deduced from notes which are close together. One

improvement would be to classify intervals out of five possible types: up, up a lot, repeat,

down and down a lot. The classification for up, down and repeat is the same as the one

discussed previously. The distinction between ‘up’ and ‘up a lot’ could depend on a

threshold on interval size, but a more reliable approach is to compare a note with a pitch

previously established in the contour; e.g. if the current note is of higher pitch than the note

before the last one, then it is classified as being ‘up a lot’. It should be noted that this only

adds more information when the pitch direction changes. For example, in a sequence of

ascending notes all but the first pitch direction would be ‘up a lot’. The five pitch classes

can be encoded as a single character representation of the direction types: u, U, r, d and D

for up, up a lot, repeat, down and down a lot respectively. Using this representation, the

first bar of the example (Figure 3.8) would be ‘udU’, while the second bar would be ‘uDu’,

showing that the two bars are indeed different.

An alternative approach has been adopted which has a similar effect but retains the existing

representation. A secondary contour is created where each symbol represents the

relationship between the current note and the ‘note before last’; e.g. in the example above,

this secondary pitch contour would be ‘UU’ for the first bar and ‘DD’ for the second bar.

This concept of secondary contours could be generalised to n-level contours, where the

pitch of the current note is compared with the nth previous note.

Using the existing representation allows the same database structure to be used. A second

database that contains the secondary contours is stored alongside the primary contour



68

database. The lookup procedure is carried out for each database and the intersection of both

sets of results are taken, as both the primary and secondary contours must be present in any

matching file. This noticeably reduces the list of matches while maintaining a quick

response time.

This initial query only identifies files which contain both the primary and secondary

contours. Further improvements are made by checking that the contours are aligned:

ensuring they happen at the same time in the file. This uses the cached contour files that

were created when the MIDI file was added to the database.

3.6.1 Comparison with five pitch classes

To compare the expressiveness of primary/secondary contours with that of a single five

pitch class representation, a list of all theoretically possible combinations of primary and

secondary contours for three consecutive notes was produced. An example was then found

for each combination, where one existed. This is shown in Figure 3.9, where it can be seen

that only 13 combinations out of the 27 possible are valid.

More importantly, there are only 13 ways of arranging three consecutive notes. This can

be proved by considering the number of positions that are available to each note, with

respect to the previous notes. The product of the number of positions can be taken as the

number of arrangements. The first note is used as a reference, as there is no previous note,

so can be considered as fixed and only having one position. The second note can be either:

higher than the first, equal to the first or lower than the first. This gives three possible

positions. The third note can be either: higher than both previous notes, equal to the first,

equal to the second, between the first and the second or lower than both the previous notes.

This gives five possible positions for the third note. This would suggest that the total

number of arrangements is 15 (1 x 3 x 5) but this is not so, as there are two special cases.

If the first two notes are the same, then there can be no “between the first and the second”.

There are also duplications when the first two notes are of equal pitch, as “equal to the

first” and “equal to the second” will produce the same arrangement, making one of them

redundant. These two cases reduce the total number of arrangements to 13.



69

Figure 3.9 - All possible primary / secondary contours for three notes, with examples of
each. A dash indicates that no example could be found

The secondary contour is constrained by the primary. For example, for three notes which

increase in pitch, the primary contour is ‘UU’. If the third note is higher than the second,

and the second higher than the first, the third note must be higher than the first. It can not

be lower, or even the same pitch as, the first note so the secondary contour can only be ‘U’.

It can be seen that the five pitch class representation has no way of denoting a repeating

pattern as shown in the secondary contour, so ‘UD/U’ (primary contour / secondary

contour) and ‘UD/R’ both translate to ‘ud’. It is clear that converting a contour from two

three-class contours into one five-class contour will lose information which can not be

regained. The conclusion must be that using two separate contours is more expressive in

this respect than a single contour with more pitch classes. With two extra representations

for a repeat, the use of a secondary contour gives the equivalent of seven pitch classes,

although having three types of repetition might not be as useful as dividing the pitch scale

into seven segments. It does, however, incorporate an element of temporal information, e.g.

showing that a pitch is repeated every other note.



70

Primary Secondary 5 Class

UU U uU

UD U ud

UD D uD

UD R ud

UR U ur

DU U dU

DU D du

Primary Secondary 5 Class

DU R du

DD D dD

DR D dr

RU U rU

RD D rD

RR R rr

Table 3 - The translation of primary/secondary contour combinations to a
representation with five pitch classes

Table 3 also shows that the secondary information is only useful when there is a direction

change in the primary pitch contour, i.e. ‘UD’ or ‘DU’, as the secondary contour may be

inferred in all other cases. For example, the primary pitch contour ‘UU’ always has a

secondary pitch contour of ‘U’.

3.6.2 Comparison with p-structures

The Query by Pitch Dynamics [Beeferman97] retrieval system uses p-structures to

maintain the relationships between all notes except the precise interval. For example, it can

directly show that the first and last notes are the same (or that they are different). The same

is not true of primary contours, as they only specify the relationship between the current

note and the previous one. There are cases where more information is implied, e.g. the

contour of ‘UU’ implies three distinct notes, but the worst case will not contain any

implicit relationships (e.g. ‘UD’). A similar argument applies to secondary contours as they

only guarantee to specify the relationship between the current note and the previous two.

From the above, it can be deduced that n-ary contours are as powerful as p-structures only

when n is no less than the length of the query minus one. This is impractical for queries of

more than a few notes but would be more flexible than p-structures, as the level of

accuracy required of a contour could be defined on a per query basis.
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3.7 Comparison of accuracy

The system of music retrieval that is described in this chapter has a number of variables

that will affect the accuracy of a search. The most important ones are the distance limit, the

atomic length and whether secondary contours are used, or not. There is an additional

implied variable: the number of files in the database.

This section evaluates the accuracy of the database and answers questions such as: are

secondary contours useful? What happens to performance as errors in the query are

accounted for? What happens to performance as the atomic length is varied? Databases

using atomic lengths of 9, 12, 13 and 14 were compiled for the evaluation.

The quality of matches was evaluated by performing searches for pieces of music which

were known to exist in the database. The rank of the target piece (if found) was noted,

along with the total number of matches found. Database queries were simulated by

extracting segments from MIDI files in the indexed collection. The set of queries was

automatically generated and consisted of 500 MIDI files, each being 10 seconds long. The

queries were required to be at least 14 pitch directions long. This is a reasonable length for

a query of that duration, given the earlier observation that the collection averages two pitch

directions a second. The restriction is, in part, also related to the fact that the largest atomic

length considered here is 14. Evaluation when allowing for short queries would be

misleading as it becomes difficult to determine if the results of the search are poor due to

the query parameters or the query itself. It should be noted that these randomly generated

queries might not necessarily reflect human generated ones but is the easiest way of

obtaining a statistically significant number of queries by which to evaluate the system.

Three types of measurements were considered for evaluating the quality of the results.

Recall is not discussed here because in all tests it was 100% and so is not a useful

discriminator. Given the knowledge that the target of the query is always found, where it

appears in the ranking is a more informative measurement. Also, is 100% recall achieved

by the number of matches being so large that the target is likely to be included by chance,

i.e. is the whole database returned each time? The mean rank and mean set size metrics are

aimed at measuring this. While the average quality of searches is obviously an important

factor, it is not necessarily a good indicator of the performance as perceived by a user. This
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Figure 3.10 - A graph evaluating the use of
secondary contours. From top to bottom: mean
rank with primary, majority rank with primary,
mean rank using secondary, majority rank
using secondary

is because a few extreme values can have a significant influence on the mean value. To

counter this effect, the rank by which the majority of targets are found is recorded. A

majority is considered here to be 85%, or more, of queries. This allows statements of the

form “the majority of queries rank their targets in the top four matches”. In a ranking

system, this is arguably more relevant than the number of files returned.

The usefulness of secondary contours was evaluated by considering the effect they had on

a database with an atomic length of 12. Figure 3.10 shows that there is a linear relationship

between the size of the database and the ranking of targets. In addition to this, it clearly

shows that secondary contours are highly effective in improving the ranking of targets.

Note also the difference between the average performance and that perceived by a user.

There is a similar linear relationship between the size of the database and the number of

matches returned. Again, secondary contours significantly improve the results, halving the

number of matching files found from an average of 396 to just 183 (for a database with

7,600 files). Given the clear advantage that using secondary contours has over not using

them, the rest of this chapter only considers the results of tests performed when using them.
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Figure 3.11 - A graph showing the effect of allowing for
errors in the query

Figure 3.11 shows the effect that allowing for errors in the query has on the ranking of

targets. It gives this information for two databases, one with 100 files and one with 1000

files. The ranking of targets when performing an exact search (d = 0) on a 100-file database

is good. In this case, 86% of queries placed the target as the top match and over 91% were

in the top two. The other extreme is the performance on the larger database and allowing

for two errors in the query. Here, only 50% of queries will return the appropriate piece in

the top six matches.

The evaluation proved that the quality of the results can be improved by increasing the

atomic length, L. The average rank of targets is markedly better when L = 13 compared to

L = 12 (see Figure 3.12). The advantage gained by increasing L from 13 to 14 is not so

great. Smaller atomic lengths become increasingly ineffective. The average ranking of

targets in a database of 7,600 files that has an atomic length of 9 is 313. This is equivalent

to approximately 4% of the database, making it ineffective for all but the smallest

collections of files. A similar relationship was observed for the ranking of the majority of

queries (Figure 3.13), although the relationship is not so uniform. Interestingly, this shows

the ‘majority’ rank to be worse than the average for L = 9, being 445 for the largest

database.
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Figure 3.12 - A graph showing the mean rank for the
different atomic lengths and database sizes

The number of matches found follows a similar pattern to the other two metrics. Figure

3.14 shows the number of matches found to increase linearly with the number of files in

the database. The gradient of this relationship is lower as the atomic length is increased.

It shows again that an atomic length of 9 is too small, returning 843 matches (on average)

for the largest database.



75

Figure 3.13 - A graph showing the rank of the majority of
queries the different atomic lengths and database sizes

Figure 3.14 - A graph showing the mean number of
matches found for the different atomic lengths and
database sizes
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Figure 3.15 - The number of contours vs. exact number of
matching files

In addition to the simulation of an operational database, the nature of the custom database,

an inverted index of the entire set of MIDI files, made it possible to determine the

performance for optimal (atomic length) queries directly.

Each possible sub-contour in the database was examined and the number of files which

contained it was recorded. The result was a list of the number of sub-contours (essentially

atomic length queries) and the number of files in which they occur. More queries matching

in fewer files suggests that there will be fewer false matches.

The results are plotted in Figure 3.15 and Figure 3.16. The first graph shows that increasing

the atomic length L does improve the resolution of the database. That is, more sub-contours

are contained in only one file. An efficient database is one whose lookup table does not

have much unused space. To get an idea of how the efficiency of the database is affected,

in Figure 3.16 the same results are plotted against the percentage coverage of the database.

This shows that over 25% of the possible contours with 13 pitch directions match just one

file. Observe that the efficiency is decreased for greater L.

The average number of files returned for each database is shown in Table 4. The

decreasing average, together with the first graph, suggests that increasing L does improve
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L Average

12 16.97

13 9.71

14 5.99

Table 4 - Average number of files returned for
different atomic lengths

performance, although efficiency is subsequently decreased.

3.8 Comparison of speed

The database of 7,600 files was indexed using the custom database structure in about three

and a half hours. Files are added to the database at an average rate of 35 per minute, or one

every two seconds. The primary concern is the speed of lookup as, for most applications,

the index does not need to be modified interactively.

The time taken for an atomic length query was measured by generating random primary

and secondary contours and performing an exact search on those contours. This was

repeated as many times as possible in ten minutes. An average execution time could then

be calculated. This was done for each database type. From Table 5, it can be seen that the
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Database type Time per lookup

Custom format 1.75 ms

Onix 2.16 ms

Standard database 40.16 ms

Table 5 - The average time taken for an atomic length query

custom database is the fastest but the text retrieval engine is less than half a millisecond

slower. The standard database is clearly much slower.

The time taken for the accuracy tests to execute was measured for the custom database.

This information was then used to calculate the total time taken for processing a query,

including extracting a pitch contour from the query file. On average, queries of the ten

second clips took 70.8 ms to execute. While observing the progress of the tests, it was

noticed that the majority of queries were executed much more quickly than this, perhaps

three or four times quicker. This was offset by a few searches that took several seconds to

complete. A busy link server could take advantage of this behaviour by increasing

throughput by identifying and ignoring queries that are known to be slow. This would be

particularly beneficial during peak usage times.

3.9 A web-based music retrieval system

A Common Gateway Interface (CGI) was developed for the retrieval system. The CGI is

a method of dynamically creating web pages. The user can type a URL into a web browser

which executes a program or script on the web server that generates the appropriate HTML

document. Arguments to the executed code can be embedded in the URL, such as the

search terms for an Internet search engine. It is common for the user to enter these

arguments via a HTML form.

An index for small collection of MIDI files was installed on a web server. The index can

be searched by primary and secondary pitch contours, entered on the main page (Figure

3.17). From the results page (Figure 3.18), the user can play a matching MIDI file or
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Figure 3.17 - The search form of the web-based interface

identify where in the song the match, or matches, occur.

Although psychological research has suggested that pitch contours play a strong part in

how melodies are remembered, or at least compared, it is not an easy representation for the

user to create directly. A small number of people were asked to write down the pitch

contour for Happy Birthday (i.e. from memory to paper) and only a few transcribed it

correctly. This is despite the fact that most people hummed the tune correctly. It is for this

reason that an alternative interface was sought.

The Java piano applet (Figure 3.19) allows the user to enter a tune using a familiar

interface (even to non-musicians). The pitch contour for the entered tune is generated

automatically on initiating a search. In practice, this creates a URL of the same form as that

created by the web form and so displays the same results as for the form-based interface.
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Figure 3.18 - Search results as presented by the web-based interface
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Figure 3.19 - The Java piano applet

The web-based retrieval engine is functionally equivalent to a remote lookup service. Any

client program that is connected to the Internet can use the web interface to perform

content based retrieval. This model is similar to the approach taken by agent systems. As

part of the Agent Fest, a combined effort to write agents for SoFAR (an agent framework),

a Java-based agent performed melodic pitch contour lookup by using the above

mechanism. An agent that extracted text contained in MIDI files was developed in a similar

manner, using a CGI / agent combination.

The retrieval software developed for this thesis has been used more directly by Matt

Swoboda. Matt developed an application that watches what a musician is playing, using

a MIDI instrument, and identifies what is being played at any given moment. Regarding

the accuracy of search results, he says:

“The system works very well for a user who plays badly and expects to

find their desired result somewhere in the rankings but perhaps not at the

top. It performs less well for a perfectly played performance.”
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This is to be expected, both due to the searches allowing for one error and because pitch

contours assume that the exact pitch can not be relied upon. He notes that there are some

contours (e.g. all R’s or all U’s) that are reported as matching in many files. He proposes

that this is a shortcoming of pitch contours. This may well be the case for all U’s but is

unlikely to hold for a sequence of repeated notes, no amount of pitch classes will represent

this differently. In this case, it is more likely that repeating notes are so common that they

should be removed from the query. A large list of matches is probably less helpful than

returning no matching documents.

3.10 Augmented searches

It may be the case that a user knows the artist or title of a piece of music they are searching

for. This information could be used to narrow the search if metadata is available, such as

if MIDI files had a standard method for storing meta information, e.g. title and artist. The

MIDI file format has the provision for naming each track. How this is used is dependent

on the person sequencing the file but common uses are to label each part (drums, vocals,

lead) or to label each instrument (piano track, violins, brass section) or sometimes to note

the artist and title of the song, along with the name of the person who sequenced the file.

The fact that there is no convention for storing this information makes it impossible to

extract just this information reliably. Instead, all the text contained in the file must be used.

A text retrieval database can then be employed to index the text. It must be noted that not

all files contain the relevant information, so the candidate files presented by a melodic

search should not be culled just because they do not feature in the results of a title search.

The text search can only reliably be used to increase the matching relevance score of the

files which contain that text.

There is a class of MIDI file in which the lyrics that accompany the music are embedded

as lyric events. Each lyric event has timing information, so that a software karaoke player

can display each lyric at the appropriate time. These lyrics may be extracted and indexed

using the same method as described above, so being used to augment a search. There are

also applications for content based navigation, as the lyrics for a particular segment of

music may be extracted as content to be used to resolve a link.



83

Figure 3.20 - Screen shot of the MIDI text indexing and
retrieval tool

The concept of extracting and indexing text contained in MIDI files was tested by

developing a piece of software that did just that. It used the same text indexing library as

given in Section 3.4.3. A collection of 870 karaoke files was added to the database.

A screen shot of the software is shown in Figure 3.20, and the test has shown that the idea

is a sound one. Although no formal testing was carried out, it is possible to make some

comments on the development. Indexing is fast, informally measured at over eight files per

second, and retrieval is even faster. A lot of this will be down to the performance of the

text search engine used, which is not the subject of this thesis and so testing this formally

was thus deemed out of scope.

3.11 Conclusions

This chapter has described a fast retrieval method which uses contour n-grams to index a

collection of MIDI files. It allows approximate lookup of the index through the use of
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query expansion. Errors can be simulated in short queries while long queries may be split

to avoid errors. These query management techniques may be used independently of any

particular indexing method. The use of the custom database format has been shown to be

preferable, although the text retrieval engine comes a close second.

The results of the index lookup must undergo several stages of verification before a

concrete list of matches can be presented to the user. In practice, the final check against the

source file is not usually required. The use of a new representation, the secondary contour,

as an additional representation proves to be worthwhile.

The handling of long queries is currently optimised for fast index lookup but this can result

in a trade off against the accuracy of an index only lookup and can actually take longer, as

there are more candidate files.

As they stand, the techniques presented in this chapter are suitable to form the basis of a

reasonably sized content based navigation system. Over 80% of ten second queries have

been shown to return the target song in the top three from a database of 1000 complete

songs. It is not reasonable to expect similar performance when substituting the song

database with a collection of 1000 hypermedia anchors.

The retrieval system presented tries to make the best use of the data placed in the index.

Before considering navigation of audio in depth, it is worthwhile investigating the quality

of this data. There were over 30 million pitch directions in the primary contour database,

averaging 120 pitch directions per minute of each MIDI track. Given that the number of

songs that have ever been written is orders of magnitude greater than that used to test the

database. It seems obvious that reducing the amount of data being added, while

maintaining recall accuracy, is the best way of ensuring the system will scale and should

improve performance for the same unfiltered database. An approach to this problem is

considered in the next chapter, which uses part classification to filter out irrelevant MIDI

tracks.
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4 Enhancing retrieval by classifying musical

parts

Classification can improve content based retrieval systems by decreasing the amount of

noise in the database. Taking retrieval of music as an example, there is little point in

indexing content which is not going to be the subject of subsequent searches. For example,

removing all but the lead (melody) line should improve the matching ability of a query by

humming system. Alternatively, a music education application might focus on one part,

such as the bass line. Content based navigation can also benefit from classification by this

extra information by allowing it to be used as another component of the link.

This chapter describes the investigation into the classification of the musical parts. The

effect of applying the technique to a database of music is subsequently evaluated. This

chapter presents an extension of the work reported in [Blackburn2000].

4.1 Introduction

Classification has uses in both temporal and content based navigation, although one could

argue that the temporal case is a form of the latter: content may be extracted from the

source document using the temporal information. The classification could be used as a

parameter to link resolution. This enables temporal links to be authored on particular parts

of the music, i.e. from 20 seconds to 30 seconds of the bass line. Similarly, content based

navigation would allow an anchor to take the form of ‘lead lines that sound like this’.

The MIDI databases developed by Ghias et al [Ghias95], McNab et al [McNab96] and

Blackburn and De Roure [Blackburn98] make use of the General MIDI (GM) standard,

which defines MIDI channel 10 to be dedicated to drums. Assuming that all MIDI files
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adhere to the standard, which the majority do, rhythm tracks can be identified with a high

degree of certainty and not added to the database. General MIDI can also help identify

instruments, which could be relevant in some applications, but of course does not identify

the role that instruments play in the piece.

In some scenarios, such as some implementations of content based navigation, the track

being classified may be taken out of the context of the other tracks. This implies a

requirement that music must be classified without the benefit of comparing the

classification subject with the rest of the piece. Removing this requirement should make

identifying the lead line relatively simple, as several studies suggest that this is likely to

be the track with the highest pitch [Uitdenbogerd98]. Common sense would suggest that

the bass line would have a lower average pitch than the lead.

4.2 Part types

Four musical part classes were used which were aimed at how a layperson listener is likely

to identify each part. This approach avoids the use of any genre specific terminology and

so is more generally applicable. The classifications used were: accompaniment; bass;

drums / rhythm and lead.

The use of a classification to describe irrelevant parts was considered but it was felt that

it would simply introduce noise into the classifiers, making identification more difficult.

Using a separate confidence measure, allowing a ‘not known’ classification, would be

more appropriate, although not all classifiers are capable of providing this. While none of

the implementations in this chapter calculate such a measure, none of the algorithms here

preclude adding this functionality.

4.3 Compiling the training set

Classifiers require a set of files by which to evaluate their performance. Many require the

same data to implement the classifier. One hundred MIDI files were selected at random

from the test collection of 7500 files, see Section 3.2. These covered a variety of genres.

Certain rules may be assumed if it consisted of a single genre, e.g. popular music. The

variable quality and variety of musical style makes classification that much harder, but the
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result should be a more generally applicable classifier. The part classification for each track

in each MIDI file was marked up manually. The tracks were then extracted to individual

MIDI files (so there was only one track per MIDI file). This resulted in a total of 535

classified musical parts: 152 accompaniment; 103 bass; 144 drums and 136 lead.

4.4 Musical features

Classification requires the extraction of a set of features, referred to as a feature vector,

from each track. Two feature vectors can be compared by determining the Euclidean

distance between them. The Euclidean distance is found by summing the squares of the

difference between each element in a vector and then taking the square root. Another

function evaluates the ‘city block’ distance. This is also referred to as the absolute distance,

as it is simply the sum of the differences.

A variety of features were extracted from each training track. Features were chosen that

could be represented as a single number, with the exception of number 5. There are a large

number of features that could have been extracted. A selection of features which the author

thought might be useful in identifying the part type were used. The selection was based on

informal discussions with colleagues and friends. These were:

1. The number of notes per second

2. The number of chords per second

3. The pitch of notes (lowest, highest and the mean)

4. The number of pitch classes used (i.e. C, C#, D, E, etc)

5. Pitch classes used

6. Pitch class entropy

7. The length of notes (lowest, highest and mean)

8. Number of semitones between notes (lowest, highest and mean)

9. The polyphony of the track (lowest, highest and mean)

10. How repetitive the track is

11. The number of the MIDI channel used

12. The instrument patches used most

All of these features are normalised to a value between 0 and 1, as this improves the
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performance of neural networks for classification. It might also improve the effectiveness

of other classification systems and can make calculation of a probability straightforward.

Repetitiveness is a number based on how many distinct n-grams there are in the primary

pitch contour of the track. This is represented as a percentage of the number of pitch

contours in the track. If there are 20 distinct contours, in a track which has 100 pitch

contours in total, the repetitiveness value would be 0.8, indicating that 80% repeats. For

this work, n = 12 was used. This is not a standard measurement of repetitiveness; there is

no one standard technique available as it relies on the representation used. The use of n-

grams throughout the database made this approach easy to implement and was the

overriding factor in the decision to use it.

4.5 Approaches to classification

Five methods of classification were considered and are described in this section. They were

chosen to be representative of different approaches to classification. Some techniques are

purely statistical while others attempt to bring to bear some knowledge of the nature of the

content. A learning algorithm is represented in the form of a neural network. A

combination of all these approaches completes the selection.

4.5.1 A simplistic statistical approach

The first approach taken was to average each of the features for all of the tracks of a

common part classification. The result was four feature vectors which describe the features

common to each class type. A feature vector to be classified is compared with each of these

class templates. The class of template that matches the closest indicates the part class.

Although not particularly scientific, this technique could be implemented quickly and

provided a benchmark by which to evaluate the more complex approaches.

4.5.2 An ad-hoc classifier

The ad-hoc classifier was based on directly coding the knowledge of a musician. A

discussion was held with an experienced music student to determine which of the features

he felt would best help identify part types. The implemented classifier notes the features
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in a channel that make it more or less likely to be a particular part. A probability can then

be assigned to each part and the most likely chosen.

As previously mentioned, General MIDI (GM) files assign channel 10 to drums. In

addition to this, there are some GM instrument numbers that are usually used for rhythm

channels (i.e. timpani, taiko drum, melodic tom, synth drum, reverse cymbal and wood

block). Tracks that use channel 10 or an instrument that is usually used for percussion are

assumed to be drum tracks. The probability of other tracks being drums is taken to be 70%

of the repetitiveness measure.

A track is more likely to be accompaniment if it only uses notes which are no more than

one octave either side of middle C and is likely to be polyphonic. Bass parts tend to use the

two octaves below the accompaniment and are quite repetitive (a measure greater than 0.6).

Bass lines are very likely to be monophonic and are heavily penalised if they are not. Lead

parts often use the two octaves above middle C and are also likely to be monophonic. They

are penalised for being repetitive.

4.5.3 K-nearest neighbour

The k-nearest neighbour (K-NN) classification method is, theoretically at least, the most

accurate one considered here. The entire training set of feature vectors is stored, along with

their part classification. Classifying a vector finds the example vector that best matches the

unclassified one and returns the classification of that example.

Due to the relatively small size of the training set (hundreds instead of thousands) it was

feasible to keep the entire set in memory. Searching against the set should result in a

noticeable performance hit (compared to the previous two methods). No improvements to

performance were considered here as accuracy was the primary concern.

4.5.4 Neural networks

The K-NN method is accurate but has the potential to be slow. Neural networks can be

thought of as an approximation of k-nearest neighbour. They are usually faster, requiring

only a couple of matrix operations, and contain more information than the simple statistical

approach.
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A multilayer perceptron based classifier was trained on 90% of the data and calibrated on

the remaining 10%. Standard neural network evaluation techniques were applied to

determine the best network configuration and learning parameters. This approach was

taken on the advice of an expert in the field.

4.5.5 A hybrid approach

After evaluating the previous methods (see Section 4.6), a hybrid classifier was

investigated. In a hybrid classifier, the results of two or more classifiers are combined to

give a more reliable classification.

The ideal hybrid might be to identify the classifier that is most reliable for each part and

take that probability. That is, to use the ad-hoc classifier for accompaniment and drums and

the neural network for bass and lead. In theory, this should result in about 80% overall

accuracy. Unfortunately, the outputs of the classifiers are not directly compatible. It may

be that the probabilities of one classifier are all mainly above 50%, while another may

calculate lower values. In the context of the other probabilities of a single classifier, a most

likely classification can be determined. Other, less direct, methods must be employed.

It is also important to note that the relative values of some classifiers can not be relied

upon. A good example of this is the neural network classifier. It was trained here to

produce one outcome, that the classification with the highest probability is the correct one.

It was not trained to rank the possible classifications. This means that all but the most

likely part type must be ignored, the absolute values of none of the classifiers are

important. It should be noted that this is not a limitation of neural networks in general, but

does illustrate the problems associated with handling the probabilities directly.

The first method of integration considered was to weight each of the probabilities

according to how reliable that value is. The probability for each part is determined by

calculating the mean value across all of the classifiers. For example, the ‘bass’ probability

from the neural network classifier is weighted by 0.8725. The same is done for the other

classifiers and the mean value taken as the likelihood of the track being the bass line. As

it uses the classifier outputs directly, even though they are weighted, it should be

susceptible to the problems outlined above.
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Classifier Euclidean City block

Statistical 58.88 % 66.17 %

Ad-hoc 71.21 %

K-NN 67.27 % 72.73 %

Neural Network 75.23 %

Hybrid 78.18 %

Table 6 - Overall classifier accuracy

Using a voting arrangement overcomes the problems associated with handling probabilities

directly. Each classifier is given one vote as to which part type it thinks is most likely. This

technique can be modified so that the more reliable classifiers are given more votes than

less reliable ones.

4.6 Comparison of accuracy

The manual classification was compared against that given by each classifier (see Table

6). The results were broken down to identify which method performs best for each part

type. The mismatches were also broken down, this time to show where each method gets

confused - when a classification is wrong, what is it mistaken for? Both Euclidean and ‘city

block’ distance metrics were evaluated.

Note that a high accuracy for a given type can only be taken to show reliable classification

if it is not often falsely assigned. A high false match would indicate behaviour similar to

always assigning a track as bass, so giving a 100% record for determining bass tracks, but

gives a poor overall performance rating.

The K-NN classifier was given 90% of the training set, so that 10% of the training set

could be used to evaluate its performance, allowing a more direct comparison with the

other methods.

The most accurate hybrid classifier used a ‘one classifier, one vote’ mechanism (78.18 %).

Weighting the voting reduced the overall accuracy to 74.55 %. Weighting each of the

probabilities and taking the average resulted in 76.36 % of tracks being successfully
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classified.

4.6.1 Statistical template classification

The statistical templates were tested against the set of tracks used to calculate the

templates. The results are given in Table 8.

4.6.2 Ad-hoc classification

The ah-hoc classification was tested against the marked up set of tracks. The results are

given in Table 7.

4.6.3 K-nearest neighbour

The k-nearest neighbour method was only tested with tracks not used in the feature vector

table. This was to allow a more direct comparison with the simple template approach,

although the test set was only a subset of that used for evaluating the other methods, so the

numbers are not as reliable. The results are given in Table 9.

4.6.4 Neural network classification

The neural network classifier was tested against the marked up set of tracks. The results

are given in Table 10.

4.6.5 Hybrid classification

The hybrid classifier was tested against the set of tracks used to test the k-nearest

neighbour classifier. As KNN classification is part of the hybrid classifier, the observations

made for testing the KNN classifier also apply here. The breakdown of results for the

simple voting hybrid is given in Table 11.
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Part Correct
Class when

wrong

Acc 59.21 % 40.91 %

Bass 80.58 % 24.03 %

Drums 94.44 % 1.30 %

Lead 52.94 % 33.77 %

Overall 71.21 %

Table 7 - Breakdown of ad-hoc classification

Part
Correct Class when wrong

Eucl. City Eucl. City

Acc 40.70 % 53.29 % 22.18 % 27.62 %

Bass 76.70 % 80.58 % 32.73 % 34.81 %

Drums 60.42 % 62.50 % 4.55 % 3.87 %

Lead 63.97 % 73.53 % 34.55 % 33.70 %

Overall 58.88 % 66.17 %

Table 8 - Breakdown of statistical template classification
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Part
Correct Class when wrong

Eucl. City Eucl. City

Acc 40.00 % 53.33 % 33.33 % 46.67 %

Bass 84.62 % 84.62 % 11.11 % 6.67 %

Drums 90.00 % 90.00 % 5.56 % 6.67 %

Lead 64.71 % 70.73 % 50.00 % 40.00 %

Overall 67.27 % 72.73 %

Table 9 - Breakdown of k-nearest neighbour classification

Part Correct
Class when

wrong

Acc 49.67 % 24.24 %

Bass 87.25 % 12.88 %

Drums 88.73 % 8.33 %

Lead 80.88 % 50.76 %

Overall 75.23 %

Table 10 - Breakdown of neural network classification
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Part Correct
Class when

wrong

Acc 46.67 % 16.67 %

Bass 84.62 % 0.00 %

Drums 90.00% 0.00 %

Lead 94.12 % 83.33 %

Overall 78.18 %

Table 11 - Breakdown of hybrid classification

Classifier
Execution time

Euclidean City block

Statistical 28.49 ms 28.48 ms

Ad-hoc 28.52 ms

K-NN 32.69 ms 31.37 ms

Neural network 28.60 ms

Hybrid 116.12 ms

Table 12 - Comparison of classifier execution time

4.7 Comparison of speed

Although speed of classification was not the primary concern here, and the classifiers were

not optimised for speed (other than the automatic optimisations performed by the

compiler), it is interesting to note.

Timing analysis was performed by reading the set of MIDI files used to train the classifiers

into memory. These files were then classified as many times as possible in ten minutes.

The tests were performed on a single user 500 MHz Intel Pentium III running Microsoft
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Classifier Performance

Statistical 82.24 %

Ad-hoc 88.97 %

K-NN 90.91 %

Neural network 90.62 %

Hybrid 94.55 %

Table 13 - Comparison of classifier accuracy when considering three
part types

Windows 2000. The results, given in Table 12, show that the k-nearest neighbour classifier

is not noticeably slower than the statistical approach. The hybrid classifier takes four times

as long as any other classifier, which is not surprising given that it uses each of the others.

4.8 Evaluation of data filtering on a music database

One of the motivations for classifying the tracks in MIDI files was to improve the quality

of data held in a music database. The effect of this was evaluated by building a contour

database consisting of a collection of 870 MIDI files and the 100 files which were marked

up when creating the training set. The database was of the type described in Chapter 3 and

used an atomic length of 14. Secondary contours were used when both building and

querying the database.

Only accompaniments and lead parts were added. Ideally, only lead parts would be added,

but the classification systems easily confused lead with accompaniments, so both lead and

accompaniment parts were used. The city block metric gave the best performance, so this

was the one used for all classifiers. The resulting performance of the classifiers is given in

Table 13.

Database queries were simulated by extracting a segment of a lead part from the training

set to represent realistic queries, as they were manually classified. The set of 500 queries

was the same as that used to evaluate the accuracy of the unclassified database, see Section

3.7 for more details. The rank of the file from which the query was taken (the target file)
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Figure 4.1 - Graph showing the ranking of queries for d = 0

was noted, along with the total number of matches found.

The test was run with varying allowances for errors, d, in the query. Note that these errors

were in addition to those that the pitch contour representation inherently supports (i.e. more

than changes in the exact pitch of a note). Errors were not simulated in the query, so this

assumes exact pitch contour recall on the behalf of the user.

The mode rank of targets in the tests was 1, i.e. the target of a search is more likely to

appear as the top choice than at any other rank. While this was encouraging, this did not

tell the whole story as, in the case of no classification and where d = 2, this accounts for

less than 55% of the queries. Figure 4.1 shows that, for d = 0, 90% of queries will return

the target file in the top 2 files even if a classifier is not used.
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Figure 4.2 - Graph showing the ranking of queries for d = 1

Figure 4.3 - Graph showing the ranking of queries for d = 2
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Tables 14, 15 and 16 show the recall and the average rank and number of matches, taking

into account any extreme results. It can be seen that the ad-hoc classifier is consistently the

best, with nearly 100 % recall and giving the smallest number of matches. The difference

between the classifiers becomes more apparent when the searches are approximate.

It is interesting to note that the classifier accuracy has little impact on the recall. Intuitively,

better results should be obtained by using a more accurate classifier. The results of this

evaluation suggest that the inverse is true, as recall is lower for the hybrid classifier (the

most accurate) while the statistically classified database shows 100 % recall. The fact that

the accuracy of a classifier is not reflected in the recall is probably due to themes being

repeated by several parts in one song. That is, removing a part that contains a matching

theme will reduce the weighting given to that song. In theory this should not matter, as the

improved removal technique is applied to the whole collection, but it may be that this also

results in one song looking much like another.

4.9 Conclusions

This chapter has shown the application of classification techniques to improve a music

retrieval system. Some techniques are purely statistical while others attempt to bring to

bear some knowledge of the nature of the content. It can be seen that classification of the

musical part does improve matching, more notably when performing approximate searches.

The selection of an appropriate classifier will depend on the application. The hybrid

classifier is the most accurate but it is also four times slower than the others. This chapter

has also shown that, in the case of a retrieval system, the most accurate classifier is not

always the most desirable. The ad-hoc classifier is a good all-round choice as it is relatively

accurate, is one of the fastest to execute and was shown to be beneficial in a retrieval

scenario.

The accuracy of the classifiers is shown to be extremely good when considering three types

of musical part, as much as 94%. This is high enough for use in an automatic system, such

as an automatic Internet indexing system or a content-based navigation system. Other types

of classifiers may perform better on the difficult problem of differentiating between

accompaniment and lead.
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Classifier Found Mean rank Mean set size

None 100.0% 9.79 16.31

Statistical 100.0% 7.79 12.09

Ad-hoc 99.8% 6.91 11.47

K-NN 98.8% 7.21 11.73

Neural network 94.4% 6.98 11.54

Hybrid 96.6% 7.28 12.04

Table 14 - Ranking of targets using exact matching

Classifier Found Mean rank Mean set size

None 100.0% 13.04 27.67

Statistical 100.0% 10.49 23.22

Ad-hoc 99.8% 9.16 20.51

K-NN 98.8% 9.78 20.96

Neural network 94.8% 9.30 20.52

Hybrid 97.0% 9.68 21.43

Table 15 - Ranking of targets allowing for one error in the query
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Classifier Found Mean rank Mean set size

None 100.0% 23.32 91.35

Statistical 100.0% 18.99 76.88

Ad-hoc 99.8% 15.94 62.69

K-NN 98.8% 17.10 64.17

Neural network 94.8% 16.05 60.96

Hybrid 97.0% 16.92 63.88

Table 16 - Ranking of targets allowing for two errors in the query
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5 Navigation of music

The previous chapters have demonstrated novel techniques for fast and accurate retrieval

of musical content. Recall that the motivation for investigating and developing these

techniques was to exploit the similarity between retrieval and navigation. This chapter

considers the application of these techniques to navigation of music. The simpler case of

temporal navigation, and the architecture developed to support it, is described first. The

architecture is then extended to cater for content based navigation. The development and

testing of a set of tools to provide proof of these concepts is also reported. This chapter

presents an extension of the work reported in [Blackburn98].

5.1 Temporal navigation of music

It was explained in Section 2.2 that temporal navigation is the following of links that are

based entirely on time information. Temporal navigation works with any temporal media,

such as audio or video. The method of capturing of the time information used to resolve

the link is application specific. The result of the capture will be either a time range or a

point in time. The user interface will have a large impact on which representation is used,

as a radio might use a single ‘link’ button while a computer-based archive viewer may

allow the selection of a range. Whichever representation is used, the concept is the same.

At any time whilst playing a piece of temporal media, a user may ask for a list of links

related to that media.

A system which supports temporal navigation can be implemented with relative ease. It

takes a time selection and something that identifies the media being played (perhaps a file

name of the URL of a stream) and searches a database of links. This is compared with the

link information in a link database to determine the list of links available to the user at that
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point. The information in the link database, which essentially consists of stream and

position information in this case, is generated by the authors of links.

One scenario that uses temporal navigation is where a user is listening to a news broadcast.

News broadcasts typically announce the headlines at the beginning of the programme,

which is followed by the full stories. On hearing a headline of interest, a user may ask to

jump to the full story for that headline without the need to listen to the other stories. Upon

hearing a truncated interview, the user might then follow a link to the unedited interview.

The idea can also be applied to live streams, such as a radio broadcast. As live streams can

be thought of as infinite, the timing information used for resolving links can not be based

on a position in a stream. The nearest equivalent is to use the current time, i.e. the time at

which the stream was broadcast. The operation of the link database is unlikely to be

affected by this scenario, as it just has to resolve time periods into available links. The

more troublesome implication is that the links will probably have to be created in realtime

if it is a live performance. This is less of a problem when the ‘live’ broadcast is actually

a pre-recorded program that is being transmitted on the stream.

Temporal navigation is similar to embedded hypertext (as found on the world wide web)

in that links are not based on content but on the position in the document. This is useful for

media files, such as digital audio files, as software to extract content from such files is not

currently reliable enough for general use. Like embedded links, there is a considerable

overhead in maintaining the linkbase.

5.1.1 System architecture

A system was developed which implemented temporal navigation of media documents on

a Microsoft Windows 32-bit platform (Microsoft Windows NT v4). The architecture for

the system is shown in Figure 5.1. A link-enabled application plays some media from a

digital library. Upon the link functionality being invoked (perhaps through the use of a

‘link’ button) the application communicates the selected endpoint to the Link Manager.

The Link Manager is a software component that persists for the duration of the user

session. It uses one or more link services to resolve the endpoint against databases of links.

The list of available links is then presented to the user.
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Figure 5.1 - The architecture used for temporal navigation

Figure 5.2 - A screen shot of the Link Manger

An endpoint identifies the document and a position or duration within the document.

Endpoints are communicated between the components using a very simple message which

is compliant with URL syntax. Links may consist of multiple source and destination

endpoints; endpoints in links could carry alternative representations (e.g. text, thumbnails)

so that it would be possible to navigate through the hyper-structure without accessing the

temporal media at all. These formats were adopted for simplicity during development: in

due course they could be adapted for interoperability with SMIL, XLink and XPointer.

5.1.2 The Link Manager

The Link Manager component, shown in Figure 5.2, receives source endpoints from the

other tools and resolves them using a link service. This link service could be a local

linkbase or possibly a remote Open Hypermedia Protocol (OHP) compliant service. It also

functions here as the available links display. Following a link is achieved by double
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Figure 5.3 - A screen shot of the Linked Player playing a file

clicking on the entry in the list or, if the 'Auto Follow Links' option is enabled, it will be

followed as soon as it is resolved.

The software was developed to explore the concepts behind navigation; the rigorous design

of a user interface was not considered and is beyond the scope of this thesis. For example,

displaying the source endpoint (at the bottom of the Link Manager window) was only

intended for demonstration purposes; it is not envisaged that the user would need to see

this information.

5.1.3 The Linked Player

The Linked Player, shown in Figure 5.3, is a general purpose media player (essentially a

wrapper for the operating system multimedia capabilities) that can send source endpoint

information to the Link Manager, either automatically or as a result of user interaction. It

is designed to resemble the original Media Player for Windows, a tool that many users are

already comfortable with.

The player has several options which control when an endpoint is sent to the Link Manager

for resolving. The ‘Link on Play’ option sends an endpoint whenever the play button is

pressed. ‘Auto Link’ sends an endpoint more frequently, approximately every second. The

size of the selection sent to the Link Manager may be changed by using a context menu on

the link button.

5.1.4 Summary

The system was tested by following links from digital audio, video and MIDI files. The

news broadcast scenario was implemented and run successfully. No link creation tools
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were developed due to the small scale of the experiment (i.e. just one person). This was not

a problem for authoring one-off links, such as linking a single headline to a full story.

Where the link management problem became noticeable was in creating links from

multiple endpoints. A link was created from the chorus of a piece of pop music to a URL

giving some information about that music. The link had to be authored for each occurrence

of the chorus. This had to be repeated for two alternative arrangements of the same song.

The use of an external linkbase meant that the links could be administered without

affecting the media that is the subject of the links. The advantage of this, over embedding

the links in the document, was that all links could be listed instead of searching for them.

This became important when preparing a demonstration of the software which required the

locations of the media and the related links to move.

The system is useful in that it is a general approach that works for any time-based media.

The disregard for content means that time is not spent extracting content which can be both

difficult and time consuming. The problem of matching content based endpoints is avoided

and is simply a matter of matching ranges of numbers (time stamps in this case).

5.2 Content based navigation of music

The previous section has shown that temporal navigation works but has its limitations.

Each occurrence of the chorus in a piece of music had to be linked separately, even though

they linked to the same information. It is desirable to be able to author a link on content,

so that the content of the chorus is linked to some information, requiring only one link to

be created and maintained. This section discusses the application of the principles of music

retrieval to navigation. The development of a set of tools to navigate music is also

described.

5.2.1 The system architecture

The temporal navigation architecture is extended to support content based navigation

(CBN), as shown in Figure 5.4. Naturally, this requires content to be extracted from the

media being played. A full representation of the content is neither required nor used,

preferring to extract a set of features that support matching against features held in a

linkbase.
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Figure 5.4 - The architecture extended for content based navigation

One approach to CBN, and the one taken in the system developed, is to use the same link-

enabled applications and to have the Link Manager call a separate component to extract

the features. This has the advantage that the media player does not need to understand the

content that it is playing. Indeed, the media player may not be aware of (or have access to)

the underlying content, as is the case with the Linked Player. This also allows temporal

links to be used along side content based ones, as the temporal information is passed to the

Link Manager in the same way for both temporal and content based navigation.

In some applications, there are alternatives to extracting the features at the Link Manager.

If the media player deals directly with the content being played, the features could be

extracted by the player. Extracting the features here, or converting the content into a more

suitable representation than the raw media, saves time as the media does not need to be

accessed twice (i.e. once to play it and once to extract features). This does have

disadvantages, one of the more subtle is that passing a segment purely as content to the

Link Manager removes all context associated with that segment. This may not matter for

primitive content based links but precludes the use of intelligent link matching that could

disambiguate features, a textual analogy might be the word ‘bear’. The meaning of the

word ‘bear’ depends on the context associated with it. Removing this context forces the

link to be applied blindly and does not allow the link author to specify the noun ‘bear’ as

the source endpoint of a link.

Both this scenario and the one implemented presume client side feature management is

desirable, as the Linked Player and Link Manger operate on the user’s machine. This also
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assumes that it is practical to extract features on the client machine, i.e. it is fast enough

to perform the extraction. The feature extraction could instead be performed remotely,

perhaps by dedicated extraction services, or in the link services themselves. This allows

the feature extraction to be platform independent, which may help the developers of feature

extraction components as developing for one platform will support all others. It does not

require the client machine to be powerful, or for the media player to know about the

content. Also, in the case of extraction at the link server, it does not require the Linked

Player to understand how to convert a media segment into features appropriate for each

server. As each link server may employ different representations for linkbases, even for

similar media, this can be a big advantage. Remote extraction is one of the most general

solutions and would also be the obvious choice except for one negative point. Each service

that extracts features must obtain a copy of the media clip from which to process. This can

be a large amount of data in the case of complex media, such as video, which requires a

network with a high bandwidth. The media must also be accessible by the server, which

excludes all media on a standard client machine that does not make all local files available

via a web server (or some other suitable mechanism, e.g. FTP). This general solution also

places a large strain on the servers, as features must be extracted for each link resolution.

Scaling this approach to handle thousands of users is also troublesome.

There is no obvious right solution to the problem of where to extract the features. The

approach chosen for the experiments was probably appropriate, given that the Linked

Player has no knowledge of the content and that the link service was implemented as a

process local to the client machine.

5.2.2 Adapting the contour database for navigation

The pitch contour retrieval database, described in the previous chapters, currently returns

a file name when it is given some musical content. Recall that the difference between

retrieval and navigation is that files containing some content are returned in the case of

retrieval but that files (or URLs) relating to some content are returned in the case of

navigation. The file is stored as a string in each case, so it is clear that the structure of the

database does not need to be modified, only the procedure that associates the name of a file

with its content.
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7While MAVIS supported content based navigation of digital audio the content
representation (FFTs) made it impossible to replicate the scenario given here. For one link to
work across several arrangements requires the endpoint of the link to sound nearly identical
(same combination of instruments played the same way).

The software tools were extended to allow an arbitrary string to be associated with some

content. The path of the file containing the content was still retained, as it might be needed

by some query validation process. An additional file path could also be stored. This was

intended for associating musical content, such as a MIDI file, with the file from which the

content was extracted. This is to support scenarios where navigation is performed from the

soundtrack of a video.

Given the higher quality of data held by the database and, by inference, a smaller number

of entries to index, the process may be enhanced for navigation. Firstly, the accuracy

should be improved, so the atomic length can be reduced to decrease the size of the lookup

table. Secondly, the ID referred to in the contour database may reference a structure more

complex than just a filename. It could contain the full contour, which may be checked

against the query contour.

The music linking example given in Section 5.1.4 was used as a proof of concept. The

content of the chorus of Axel F. (by Harold Faltermyer) was linked to a URL of a web page

discussing the film Beverly Hills Cop, from which the music is taken. Only one link was

authored which was enough to associate all occurrences of the chorus with the URL, in all

arrangements of the song.

This is the first known implementation of a content based navigation system for music7.

The use of the indexing techniques from previous chapters ensures that it is fast enough for

an interactive system. The time taken to resolve a query will be identical to the retrieval

timings given in Section 3.8 plus the overhead of extracting the content.

A detailed evaluation of the effectiveness of the music database for navigation is not

currently possible. A realistic evaluation requires a real linkbase to evaluate. The tools

developed were not intended to be used as part of a user trial as it is out of the scope of this

thesis; most of the links must be manually entered into the linkbase. Due to the lack of a

suitable linkbase, no evaluation was attempted.
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5.3 Notes on implementation

The approach to navigation taken in this thesis, namely to extend retrieval techniques, may

appear to be so natural a route as to be inconsequential. This is misleading as developing

any system for navigation of audio, content based or otherwise, is not a trivial task. It is

only because of the approach taken that navigation would appear to be the logical next step

from retrieval. This section gives some insight into the scale and structure of the software

developed.

The retrieval engine described in the previous chapters was written in C++ using the

Borland C++ Builder development environment. The core functionality was developed as

a set of libraries that could manipulate MIDI files, create and use an index file and finally

manage the not-so-small task of query processing and result merging. The set of libraries

consist of 25,000 lines of source code in total (including comments and white space). The

Microsoft Windows specific code adds several thousand lines to this count (for just the

retrieval tools).

The majority of the audio navigation system, detailed in this chapter, is designed purely

for the MS Windows platform. This is a further 12,000 lines of source code, although that

includes basic XML parser and support for the Open Hypermedia Protocol (OHP).

The navigation system implementation closely follows the architecture diagrams given

earlier. The Link Player uses a COM (Common Object Model) object to communicate

endpoints to the Link Manager. (Incidentally, the use of COM has the side effect of being

usable from many scripting languages.) A link server is implemented as a COM object,

which allows new servers to be implemented without modifying the code. The Link

Manager can be configured to use different link servers and linkbases. The feature

extraction is currently embedded in the Link Manager, although this could also be

modularised in a similar manner.

5.4 Using classification in navigation

Classification has uses in both temporal and content based navigation, although one could

argue that the temporal case is a form of the latter as the temporal location of content can
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be determined. The classification could be used as a parameter to link resolution. This

enables temporal links to be authored on particular parts of the music, i.e. from 20 seconds

to 30 seconds of the bass line. Similarly, content based navigation would allow an anchor

to take the form of ‘lead lines that sound like this’.

Reliable classification can be used to enhance a content based navigation system by

allowing more precise (but still general) links to be authored. For example: ‘bass lines like

this one are linked to some information’. The recall accuracy of a link database when used

in conjunction with part filtering has yet to be evaluated. It should prove to be at least as

useful as for retrieval, due to the fact that only a subset of the music collection is stored.

Implementing this concept would require the ID given in the database to refer to a structure

contain the additional conditions of the link applying, such as valid part types. This was

not investigated further as it is an extension of content based navigation and so is not

directly the focus of this thesis.

5.5 Conclusions

This chapter has shown how musical pitch contours can be used as features for content

based navigation. An extensible architecture for temporal navigation has been shown to be

effective. The architecture has been extended to work with content of a restricted set of

media types (i.e. MIDI files) to provide content based navigation. Advantage was taken of

the similarity between content based retrieval and navigation by utilising the same content

matching techniques in both cases. The content based navigation system described is the

only one known to support music at the score level.

Early versions of these tools formed part of a technical demonstration given at ACM

Multimedia ‘97 in Seattle. Since then, further requirements of a useful CBN system have

discovered as a side effect of developing the prototype tools. For example, a history list

was added to the media browser, as is now common among web browsers and so expected

of any competent navigational system.
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6 Conclusions

This thesis has investigated the content based retrieval and navigation of music. It has

presented novel techniques for fast retrieval and architectures, and prototype tools, for

navigation. These elements have been drawn together to present the first known system

capable of navigating music by its content. The melodic pitch contour has been shown to

be a powerful and flexible representation of this content.

It has presented a fast method of retrieval if music which uses contour n-grams to index a

collection of MIDI files. Approximate lookup of the index is supported through the use of

query expansion. Errors can be simulated in short queries, while long queries may be split

to avoid errors. The use of a custom database format has been shown to be the fastest,

although the text retrieval engine is not too slow.

A new representation, secondary contours, was introduced as a complementary

representation that does not require the development of additional indexing techniques.

This was shown to improve accuracy while adding little overhead to the search process.

Using a secondary contour in parallel with a primary one was shown to be more powerful

than using a representation with five pitch classes.

The results of the index lookup must undergo several stages of verification before a

concrete list of matches can be presented to the user. In practice, the final check against the

source file is not usually required. The use of secondary contours as an additional

representation proves successful.

The handling of long queries is currently optimised for fast index lookup but this can result

in a trade off against the accuracy of an index only lookup and can actually take longer, as

there are more candidate files.
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Chapter 4 explained the verbose nature of pitch contours in MIDI files and showed that

filtering of content is required for large databases. Methods for the classification of musical

parts (or roles) were developed and evaluated in the context of retrieval. Some techniques

were purely statistical while others attempted to bring to bear some knowledge of the

nature of the content. It could be seen that classification of the musical part does improve

matching, more notably when performing approximate queries. The ad-hoc method is the

most accurate and is also the fastest.

Musical pitch contours were shown to be useful features for content based navigation in

a prototype system, which is believed to be the first of its kind. An extensible architecture

for temporal navigation was shown to be effective. The architecture was extended to work

with the content of a restricted set of media types (i.e. MIDI files) to provide content based

navigation. The similarity between content based retrieval and navigation was utilised and

the same content matching techniques were used in both cases.

6.1 Future work

While this thesis has focussed on its particular contribution, the work has raised some

interesting questions and directions for research stemming from this.

6.1.1 Developing and evaluating a real linkbase

The nature of the data indexed in a linkbase is likely to be different from that in an index

intended for retrieval, which may have consequences for the indexing technique used. This

can not be proved until real linkbases are developed. This thesis has proved the feasability

of temporal and content based navigation of music. The next step is to develop a set of

tools that allow non-technical users to create and manage linkbases. Only then can a

detailed evaluation be performed.

6.1.2 Notational differences for matching

Due to MIDI being a performance oriented standard, key presses rather than notes are

communicated. This means that C# and Db are transmitted as the same key on a piano

(which they are). The difference is not important to the listener but it is to musicologists.

Although similarity matching in music concentrates on pitch, comparison of the notation
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might allow better use of the existing data. As MIDI files are the most widely available

sources of music, some method of determining the correct pitch notation will be required.

This issue has already been investigated by Blombach [Blombach95] who has developed

an algorithm for achieving this. This would give five extra pitch classes per octave, taking

the total number from twelve to seventeen.

This thesis has not evaluated this approach, as melodic pitch contours would ignore this

additional information. Similarly, pitch contours could, in principle, be applied to

microtonal music, or indeed and scales other than the standard 12-note equally tempered

scale.

6.1.3 Improving retrieval

It is clear that the accuracy of the retrieval technique will play a large part in the usability

of a system for navigation. The indexing methods presented in this thesis are believed to

be suitable for use in a linkbase. Currently, 85% of queries result in the target song

appearing in the first four matches when there are 7,600 complete songs in the database.

The level performance will drop as more files are added, eventually dropping to an

unacceptable level. There are a number of improvements that could be made to the retrieval

system described in this thesis.

Scale the contour counts. The current implementation notes the number of occurrences of

each sub-contour in a file on adding it to the database. This is an absolute number which

anecdotal evidence suggests can cause problems. This is because longer or more

complicated pieces of music will naturally contain more sub-contours. This causes the

system to rank larger MIDI files higher than smaller ones. This is especially evident when

locating different arrangements of the same song. Normalising the sub-contour count on

a per file basis, so that the count reflects the relative relevance of that contour for that file,

should stop this. Normalisation has the consequence that one stage of the results checking,

ensuring enough sub-contours per match, can no longer be performed.

Add tracks individually. Stephen Downie showed that his database did not need to store the

precise location of contours, only the name of the file that they occur in. The accuracy was

only marginally improved by ensuring matches were complete. The same is probably not
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true for adding an entire MIDI file as one entity, as there are many more sub-contours per

file than per track. Adding the tracks in a MIDI file to the database one at a time is likely

to improve accuracy overall. This concept was not examined further as links were

implemented with a single contour as the source of the link.

Using rhythm contours. The use of rhythm contours has been reported by many people in

the field to be beneficial to retrieval. The improvement has not been as great as adding

more pitch classes but is still worth considering. One of the advantages with adding

support for rhythm contours to the system described in this thesis, is that it can make direct

use of the underlying contour database. This would be similar to the way in which

secondary contours are currently supported.

Quantize the MIDI before extracting pitch contours. Recall that MIDI is a performance

oriented standard as a musician is unlikely to play a piece of music exactly like it is written

down on paper. Because of this, and the limitations of MIDI, the timing of notes in a MIDI

file will be slightly out (when compared with the musical score). This can result in three

notes, that appear to a listener to sound simultaneously, starting at slightly different times.

This will have an impact on the contour generated from that performance, as what should

be one pitch transition is recorded as several. Most MIDI sequencers allow a musician to

tidy the note timings (quantize), which would stop this from happening, but some feel that

this can remove the feeling from a piece and make it sound computer-generated. As it is

likely that many files will not be quantized, it may be beneficial to a publicly used system.

Extend the system to support n-ary contours. This thesis has shown the use of secondary

contours to be a highly beneficial in retrieval, improving average results by as much as

40%. It has also shown the expressiveness of the contour combination to be comparable

with a five-pitch representation. Other researchers in the field have proved that more

accurate results are obtained by using a representation with more pitch classes. Considering

all these points, it is reasonable to expect that using a tertiary contour should improve the

current system. This could be further extended to n-ary contours, although there may be

a diminishing return, in terms of space vs. improvement of accuracy.

Improve the presentation of match relevance to the user. The scores are currently absolute,

even if the contour count is normalised per track or file. This can confuse users as queries
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of similar lengths can return wildy different scores, largely due to the type of query

expansion used. This issue can be resolved by either presenting the scores in a normalised

form (i.e. the top-ranking match is given a mark of 1000 and the others given marks

relative to that) or by not displaying the scores to the user and just showing the ranking

position of each match. The former is not ideal, as it suggests a 100% match for the top-

ranking item (which is not always the case). The later is no better, as all relative match

information is lost, although it is arguably not misleading (due to no claim of a 100%

match). Obviously, the ideal score display should show both the accuracy of each match

and how close the matches are. No solution was investigated because this not an issue with

the implemented linkbase, as all matching links are displayed.

6.1.4 Texture of music

It would be interesting to see if determining the ‘texture’ of music, through the use of co-

occurrence matrices (Haralick [Haralick73]) normally used to match texture in images,

could be used to retrieve links in a linkbase, or as an aid to classification. Co-occurrence

matrices for music would give the probability of the next note being x, given that the

current note is y. So if a tune consisted of two alternating notes then the musical equivalent

of stripes would be represented. It is unlikely that texture alone would be enough to

identify content, as it is a very abstract concept, but could be useful in reducing the search

space.

Applying the technique in reverse would also be intriguing. That is, given a texture matrix,

compose a piece of music using these probabilities. However, the value of any results is

of questionable value to the field of computer science.

6.2 Going beyond content

This thesis has shown that the concept of using musical content as an endpoint in a

navigation system is a viable one. The application of techniques to further understand the

content, with a view to improving both retrieval and navigation, has also been discussed

(i.e. musical parts). As the size and use of musical retrieval and navigation systems grows,

it will become increasingly important to understand and exploit the semantics of music.

A content based link currently matches as long as the notes are similar enough (for musical
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links). The ability to comprehend what the composer intended to convey with a given set

of notes gives much more precise control. It would make it possible to author links from

musical constructs (e.g. a chorus) or even intended mood (e.g. sorrowful, happy). This

might be described more generally as the context of the link. The development of a musical

semantic engine poses the biggest challenge in this field, although it also promises the

biggest rewards.
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