Musical Part Classification in
Content Based Systems

Steven Blackburn and David De Roure

Department of Electronics and Computer Science, University of Southampton
sgb97r@ecs.soton.ac.uk

Abstract. In the Fourth Open Hypermedia Systems workshop, the au-
thors presented scenarios and a set of prototype tools to explore the
application of open hypermedia principles, including content-based nav-
igation, to temporal media. The purpose of the current paper is to pro-
vide an update on this work, focussing in particular on the ongoing work
on content based navigation of music. We describe the development of
a system which classifies the musical parts in MIDI files. This classifi-
cation is then used to enhance content based retrieval and navigation
of music. The effectiveness of the various approaches to classification is
evaluated with respect to both stand-alone performance and when used
in conjunction with a contour database.

1 Introduction

In the paper “Amphion: Open Hypermedia Applied to Temporal Media” [2] in
the Fourth Open Hypermedia Systems workshop, we presented scenarios and
a set of prototype tools to explore the application of open hypermedia princi-
ples to temporal media (see also [1]). As well as hypermedia linking based on
time positions and intervals, our interest continues to be in the navigation of
a multimedia information space using content-based navigation; i.e. we move
from multimedia content to features of that content to enhance our navigational
hypermedia system. Our case study is musical information, which provides a
particularly rich set of representations with which to work.

Of the many possible musical features, we have chosen melodic pitch contours
as our case study. While other systems using pitch contours are aimed primar-
ily at content based retrieval, we have addressed the particular requirements
of an interactive content based navigation system. For example, the response
time needs to be within acceptable bounds, so we have chosen to employ query
expansion and constant-time lookup rather than fuzzy matching mechanisms.

The primary motivation for the study presented here is that informal em-
pirical work has demonstrated a need to be able to refine our searches; e.g. we
may have a query which is known to be a fragment of melody, and we wish to
match this against other melodies and not all parts. This requirement is distinct
from identifying instruments, which can sometimes be achieved from available
meta-data anyway. Analogous situations occur in other content based navigation
domains such as images, where we wish to compare images of a similar type.

The main part of this paper addresses the classification problem, why it is
desirable and our methodology for investigating it, using MIDI as a case study.
We have employed the MIDI format as a representation from which to extract the
features which in turn are used to determine the classification. MIDI files store
several independent but synchronised channels each typically representing one
instrument and carrying note-on and note-off information; each channel may
have many notes sounding at once. We can convert digital audio to MIDI by
available pitch tracking techniques, and the representations can be aligned via
time-stamps and position pointers. MIDI versions of material may be available
directly from the production process (synchronized with digital audio) or they
may be created independently.

A secondary motivation for this study has arisen in the course of the research.
Initially we regarded multimedia content as containing locations and objects to
which data in a link database might refer. We now propose another view: that
multimedia content can itself be regarded as a linkbase. For example, given a
fragment of music played on one instrument, a MIDI file enables us to find
associated fragments played by other instruments, perhaps associated text, and
indeed timing information which we can use to reference synchronised media
such as video.

In order to enhance our prototype system and to explore ‘content as linkbase’,
we have identified a need to classify channels of MIDI data in terms of the role
they have in the music. This is an instance of a general approach where one
could take compound multimedia entities and classify their sub-components in
order to provide meaningful navigation in that space — we believe similar issues
would arise with other entities that entwine various forms of information and a
coordinate system, such as digital maps.

2 Classification

Classification can improve content based retrieval systems by decreasing the
amount of noise in the database. Taking retrieval of music as an example, there is
little point in indexing content which is not going to be the subject of subsequent
searches. Removing all but the lead (melody) line should improve the matching
ability of query by humming systems.

Classification has uses in both temporal and content based navigation, al-
though one could argue that the temporal case is a form of the latter. The
classification could be used as a parameter to link resolution. This enables tem-
poral links to be authored on particular parts of the musi; e.g. from 20 seconds
to 30 seconds of the bass line. Similarly, content based navigation would allow
an anchor to take the form of ‘lead lines that sound like this’.

There has been little work on classifying music to assist with search, with
Uitdenbogerd and Zobel [5] being notable exceptions. They tested several simple
algorithms for producing a monophonic melody from a polyphonic MIDI file. A
small user trial suggested that always using the top note gave acceptable results

for many cases. However, this approach is obviously flawed if the melody is not
the highest pitch being played.

The MIDI databases developed by Ghias et al [3], McNab [4] and Blackburn
[1] make use of the General MIDI standard which defines MIDI channel 10 to be
dedicated to drums. Assuming that all MIDI files adhere to the standard, which
the majority do, rhythm tracks can be identified with a high degree of certainty
and not added to the database.

Classification involves extracting a set of features, referred to as a feature
vector, from each channel. Two feature vectors can be compared by determining
the Euclidean distance between them. The Euclidean distance is found by sum-
ming the squares of the difference between each element in a vector and then
taking the square root. Another function evaluates the so-called ‘city block’ dis-
tance, which simply uses the mean difference. It is referred to as the city block
metric due to the shape of the boundaries in the feature space, a diamond.

3 Part Types

For our experiments we use four musical part classes, according to how a layman
listener is likely to identify each part. This approach avoids the use of any genre
specific terminology and so is more generally applicable. The classifications used
are: accompaniment; bass; drums / rhythm and lead.

The use of a classification to describe irrelevant parts was considered but
it was decided that it would simply introduce noise into the classifiers, making
identification more difficult. Having a separate ‘interesting / confidence’ measure
would be more relevant.

4 Compiling the Training Data

Classifiers require a set of files by which to evaluate their performance, and many
require the same data to implement the classifier.

We selected 100 files at random from a collection of 7500 MIDI files, cover-
ing a variety of genres, found on the Internet. If it consisted solely of popular
music then certain rules may be adhered to. The variable quality and variety of
musical styles makes classification that much harder, but the result should be a
more generally applicable classifier. The part classification for each channel was
marked up manually and then extracted to individual MIDI files (so there was
only one channel per MIDI file).

This resulted in a total of 535 classified musical parts: 152 accompaniment;
103 bass; 144 drums and 136 lead.

5 Musical Features

A variety of features are extracted from each training channel. These are:

— The number of notes per second

— The number of chords per second

— The pitch of notes (lowest, highest and the mean average)

— The number of pitch classes used in the channel (ie: C, C#, D, E, etc)
— Pitch classes used

— Pitch class entropy

— The length of notes (lowest, highest and mean average)

— Number of semitones between notes (lowest, highest and mean average)
— The polyphony of the channel (lowest, highest and mean average)

— How repetitive the channel is

— The number of the MIDI channel

— The instrument patches used

Repetitiveness is a number based on how many distinct n-grams there are
in the primary pitch contour [1] of the channel. This is the number of distinct
n-grams, represented as a percentage of the total number of pitch directions in
the channel.

All of these features are normalised to a value between 0 and 1, as this is
improves the performance of neural networks for classification. It also improves
the effectiveness of other classification systems and makes calculation of a prob-
ability straightforward.

6 Approaches to Classification

This section discusses the three methods of classification that we have investi-
gated.

6.1 A Simplistic Statistical Approach

We first take the simple approach of averaging each of the features for all of
the channels of a common part classification. The result is four feature vectors
which describe the features common to each class type.

A feature vector to be classified is compared with each of these class tem-
plates. The closest match is determined to be the classification. Although not
particularly scientific, this technique can be implemented quickly and provides
a benchmark by which to evaluate the more complex approaches.

6.2 Ad-hoc Classification

The ad-hoc classifier is based on directly coding the knowledge of a musician.
The classifier notes properties in a channel that would make it more or less likely
to be a particular part. A probability can then be assigned to each part and the
most likely chosen.

As previously mentioned, General MIDI (GM) files assign channel 10 to
drums. In addition to this, there are some GM instrument numbers that are
usually used for rhythm channels (i.e. timpani, taiko drum, melodic tom, synth

drum, reverse cymbal and wood block). A channel exhibiting these properties is
assumed to be drums. The probability of other tracks being drums is taken to
be 70% of the repetitiveness measure.

A channel is more likely to be accompaniment if it only uses notes which are
no more than one octave either side of middle C and is likely to be polyphonic.
Bass parts tend to use the two octaves below accompaniment and is quite repet-
itive (a measure greater than 0.6). Bass is very likely to be monophonic and is
heavily penalised if not. Lead parts often use the two octaves above middle C
and is also likely to be monophonic. It is penalised for being repetitive.

The particular technique we employ in determining the probability has sim-
ilar properties to comparing a feature vector, so the different distance metrics
may produce different results. However, the values used in the evaluation are
very coarse, so are unlikely to differ.

6.3 K-Nearest Neighbour

The k-nearest neighbour (K-NN) classification method is, theoretically at least,
the most accurate one considered here. The entire training set of feature vectors
is stored, along with their classification. Classification finds the example vector
that best matches the unclassified one and returns the classification of that
example vector.

Due to the relatively small size of the training set (hundreds instead of thou-
sands) it was feasible to keep the entire set in memory. Searching against the
set should result in a noticeable performance hit (compared to the previous two
methods). No improvements to performance were considered here as accuracy
was our primary concern.

7 Evaluation

We evaluate the various approaches. Primarily for accuracy, as the algorithms
are not optimised for speed, although speed is interesting to note.

7.1 Comparison of Accuracy

The manual classification was compared against that given by each classification
method (see Table 1). The results are broken down to identify which method
performs best for each part type. The mismatches were then broken down, to
show where each method gets confused — when a classification is wrong, what is
it mistaken for. Both Euclidean and ‘city block’ distance metrics were evaluated.

The K-NN classifier used 90% of the training set, so that the remaining 10%
of the set could be used to evaluate its performance, allowing a more direct
comparison with the other methods.

Simple Template The statistical templates were tested against the set of chan-
nels used to calculate the templates. The results are shown in Table 2.

Table 1. Overall classifier accuracy

Classifier |Euclidean|City block

Statistical| 58.88% | 66.17%
Ad-hoc | 71.21% 71.21%
K-NN | 67.27% | 72.73%

Table 2. Breakdown of statistical template classification

Correct Class when wrong
Part |Euclidean|City Block|Euclidean|City Block
Acc | 40.70% | 53.29% | 22.18% | 27.62%
Bass | 76.70% | 80.58% | 32.73% | 34.81%

Drums| 60.42% | 62.50% 4.55% 3.87%
Lead | 63.97% | 73.53% | 34.55% | 33.70%

Overall| 58.88% | 66.17%

Ad-hoc Classification The ad-hoc classification was tested against the marked
up set of channels. The results are shown in Table 3.

Table 3. Breakdown of ad-hoc classification

Correct Class when wrong
Part |Euclidean|City Block|Euclidean|City Block
Acc | 59.21% 59.21% 40.91% 40.91%
Bass | 80.58% | 80.58% | 24.03% | 24.03%

Drums| 94.44% 94.44% 1.30% 1.30%
Lead | 52.94% 52.94% 33.77% 33.77%

Overall| 71.21% | 71.21%

K-Nearest Neighbour The k-nearest neighbour method was only tested with
examples not used in the feature vector table. This allows a more direct compar-
ison with the simple template approach, although the test set is only a subset of
that used for evaluating the other methods. The results are shown in Table 4.

7.2 Comparison of Speed

Timing analysis was performed by reading the set of MIDI files, used to train
the classifiers, into memory. These files were then classified as many times as

Table 4. Breakdown of k-nearest neighbour classification

Correct Class when wrong
Part | Eucl. | City | Eucl. City
Acc |40.00%|53.33%|33.33%| 46.67%
Bass (84.62%|84.62%(11.11%| 6.67%

Drums [90.00%(90.00%| 5.56% | 6.67%
Lead |64.71%|70.73%|50.00%| 40.00%

Overall |67.27%|72.73%

possible in ten minutes. Tests were completed on a single user 500 MHz Pentium
IIT running Windows NT 4. Note that K-nearest classification is not using an
optimised algorithm. The results, given in Table 5, show that the k-nearest
neighbour classifier is not noticeably slower than the statistical approach.

Table 5. Comparison of classifier execution time

Classifier |Euclidean|City block
Statistical| 50.14 ms | 50.65 ms
Ad-hoc |49.75 ms | 49.83 ms
K-NN |54.90 ms| 53.42 ms

7.3 Evaluation of Data Filtering on the Database

One of the reasons for classifying the channels was to improve the quality of
data in a musical database. We evaluated this by building a contour database
consisting of a collection of 800 MIDI files and the training set. The database
was of the type described in [1] and used an atomic unit of 14 pitch directions.
Secondary contours were used to both build and query the database.

Only accompaniment and lead parts were added. Ideally, only lead parts
would be added, but the classification systems easily confuse lead with accom-
paniment, so both lead and accompaniment parts are used. The city block metric
gave the best performance, so this was the one used for all classifiers. The re-
sulting performance, considering three part classifications, is given in the Table
6.

Database queries were simulated by extracting a segment of a lead part from
the training set, as the manual classification represents a realistic query. The
set queries used was 500 MIDI files, each 10 seconds long, although 57 of the
files had pitch contours less than 12 pitch directions and so ignored, to represent
a sensible query. The rank of the file from which the query (the target file) is

Table 6. Comparison of classifer accuracy when considering three classes

Classifier |Performance
Statistical| 82.24%
Ad-hoc 88.97%
K-NN 90.91%

taken is noted, along with the total number of matches found. The test was run
with varying numbers of error, d, accounted for in the query. The errors are in
addition to those that the pitch contour representation does not allow for (ie:
more than changes in the exact pitch). Note that errors were not simulated in
the query and so assumes exact pitch contour recall on behalf of the user.

The mode ranking found in all the tests was 1. This does not tell the whole
story as, in the case of d = 2, this accounts for less than 35% of the queries.
The graphs (Fig. 7.3, Fig. 7.3 and Fig. 7.3) show that, for d = 0, 90% of queries
will return the target file in the top 8 files, whether a classifier is used or not.
Classification does improve matching although this tends to reduce the number
of false positives, rather than having a large impact on the ranking of common
queries.

90 t //%
n
Q0
20|
080
o
Y
60

12345678910
Worst Rank
= all —adhoc ~stats = knn

Fig. 1. Response when using exact matching (d = 0)

Tables 7, 8 and 9 show the average (mean) recall accuracy, taking into account
any extreme results. It can be seen that the ad-hoc classifier gives consistently
good average results, although the benefits of filtering only become apparent
when matching allowing for larger errors.

©
o

P

//"/

o]
o

% of Queries

4
/

~
o

/

!

D
o

12345678
Worst Rank

9 10

—=all —adhoc = stats ~ knn

Fig. 2. Response when allowing for one error (d

~
o

L
L

(o2}
o

Y el

i

a
o

% of Queries

N
o

W
o

12345678
Worst Rank

~=all ~—adhoc ~ stats

Fig. 3. Response when allowing for two error (d

9 10

~knn

1)

2)

Table 7. Ranking of targets using exact matching

Classifier [Mean rank|Mean set size
None 13.8059 46.9097
Statistical| 11.3747 39.2460
Ad-hoc | 10.1041 33.5056
K-NN 10.4244 35.7246

Table 8. Ranking of targets allowing for one error in the query

Classifier [Mean rank|Mean set size
None 16.5598 68.0316
Statistical| 13.8623 59.8126
Ad-hoc | 12.1174 50.8440
K-NN 12.5102 53.9052

Table 9. Ranking of targets allowing for two errors in the query

Classifier [Mean rank|Mean set size
None 46.605 334.461
Statistical| 39.8442 319.779
Ad-hoc 32.6343 288.009
K-NN 33.7607 295.641

8 Conclusions and Future Work

We have shown the application of alternative classification techniques to im-
prove our content-based navigation system. Some techniques are purely statisti-
cal while others attempt to bring to bear some knowledge of the nature of the
content. It can be seen that classification of musical part does improve match-
ing, more notably when performing approximate queries. The ad-hoc method
appears to work best and is also the fastest.

Reliable classification can be used to enhance a content based navigation
system by allowing more precise (but still general) links to be authored. For
example: ‘bass lines like this one are linked to some information’. We have yet
to evaluate the recall accuracy of a link database when used in conjunction with
part filtering. It should prove to be at least as useful as shown here, due to the
fact that only a subset of the music is stored. The accuracy of the classifiers is
shown to be extremely good when considering three types of musical part, as
much as 90%. Other classifiers may perform better on the difficult problem of dif-
ferentiating between accompaniment and lead. Neural networks are one method
we plan to investigate, along with a hybrid classifier that uses a combination of
the most accurate features of the other methods.

We have exercised the notion of ‘content as linkbase’ in an experiment using
MIDI files which contain textual representation of lyrics, enabling us to map from
contour to text (and thence tools for linking with text). Future work includes
building on the classification system to map from one part to another; e.g. given
a chord sequence, what do we know about the corresponding bass lines within
a given context? A metric for one of the characteristics of musical parts, repet-
itiveness, was obtained as a side effect of the content-processing implemented
to compute the contour database, an aspect we hope to explore in future work.

This demonstrates a general point: content-based navigation involves features;
once we have features, we have the basis for classification of components of con-
tent and of the content itself (e.g. classification of musical genre). Classification
improves the effectiveness of searches; furthermore, by classifying in advance, we
reduce computation at query time.

9 Acknowledgements

We would like to thank Pete Elsdon for his input into the ad-hoc classifier. This
work was partially funded by EPSRC QulIC.

References

[1] S. Blackburn and D. DeRoure. A tool for content based navigation of music. In
Proc. ACM Multimedia ’98, pages 361-368, 1998.

[2] D. DeRoure and S. Blackburn. Amphion: Open hypermedia applied to temporal
media. In Proc. 4th Open Hypermedia Workshop, pages 27-32, 1998.

[3] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming - musical
information retrieval in an audio database. In Proc. Multimedia ’95, pages 231-236,
San Francisco, California, November 1995.

[4] R.J. McNab, L. A. Smith, L.H. Witten, C.L. Henderson, and S.J. Cunningham.
Towards the digital music library: Tune retrieval from acoustic input. In Proc.
DL’96, pages 11-18, 1996.

[6] A.L. Uitdenbogerd and Zobel J. Manipulation of music for melody matching. In
Proc. ACM Multimedia ’98, pages 235-240, 1998.

